
  
 

Product Manual 36333
(Revision A)

Original Instructions

 
 
 
 

 

MotoHawk Development and 
Prototyping System 

 
 

Resource Guide 

  



 
 

 
DEFINITIONS 

This is the safety alert symbol. It is used to alert you to potential personal 
injury hazards. Obey all safety messages that follow this symbol to avoid 
possible injury or death. 

• DANGER—Indicates a hazardous situation which, if not avoided, will result in death 
or serious injury. 

• WARNING—Indicates a hazardous situation which, if not avoided, could result in 
death or serious injury. 

• CAUTION—Indicates a hazardous situation which, if not avoided, could result in 
minor or moderate injury. 

• NOTICE—Indicates a hazard that could result in property damage only (including 
damage to the control). 

• IMPORTANT—Designates an operating tip or maintenance suggestion. 
 

The engine, turbine, or other type of prime mover should be equipped with an 
overspeed shutdown device to protect against runaway or damage to the prime 
mover with possible personal injury, loss of life, or property damage. 

The overspeed shutdown device must be totally independent of the prime mover 
control system. An overtemperature or overpressure shutdown device may also 
be needed for safety, as appropriate.

 
 

 

Read this entire manual and all other publications pertaining to the work to be performed before 
installing, operating, or servicing this equipment. Practice all plant and safety instructions and 
precautions. Failure to follow instructions can cause personal injury and/or property damage. 

 
 

 

This publication may have been revised or updated since this copy was produced. To verify that 
you have the latest revision, be sure to check the publications page on the Woodward website: 

www.woodward.com/searchpublications.aspx 
The current revision and distribution restriction of all publications are shown in manual 26311. 
 
The latest version of most publications is available on the publications page. If your publication is 
not there, please contact your customer service representative to get the latest copy. 

 
 

 

Any unauthorized modifications to or use of this equipment outside its specified mechanical, 
electrical, or other operating limits may cause personal injury and/or property damage, including 
damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or 
"negligence" within the meaning of the product warranty thereby excluding warranty coverage 
for any resulting damage, and (ii) invalidate product certifications or listings.

 

 
To prevent damage to a control system that uses an alternator or battery-charging 
device, make sure the charging device is turned off before disconnecting the battery 
from the system. 

 

To prevent damage to electronic components caused by improper handling, read 
and observe the precautions in Woodward manual 82715, Guide for Handling and 
Protection of Electronic Controls, Printed Circuit Boards, and Modules. 

 
 
 
 
 
Revisions—Text changes are indicated by a black line alongside the text. 
 
 
 
 
 
 
Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is 
believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly 
undertaken. 

© Woodward 2011 
All Rights Reserved 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward i 

Contents 
 
 

ELECTROSTATIC DISCHARGE AWARENESS .................................................. III 
CHAPTER 1. GENERAL INFORMATION ........................................................... 1 
About MotoHawk .................................................................................................... 1 
ECM565-128 Developer’s Kit ................................................................................. 2 
System Requirements ............................................................................................ 3 
MATLAB™ Installation Procedure .......................................................................... 3 
Green Hills Software Installation Procedure ........................................................... 4 
GCC Compiler Installation Procedure .................................................................... 6 
MotoHawk Installation Procedure ........................................................................... 7 
Creating an Application in MATLAB™ ................................................................... 8 
Building Your Application ........................................................................................ 9 
Assembling Your Kit ............................................................................................. 10 
Starting MotoTune ................................................................................................ 11 
Checking MotoServer ........................................................................................... 11 
Creating a Display ................................................................................................ 13 
Checking Operation .............................................................................................. 14 
First Application .................................................................................................... 14 
Modifying the Application ...................................................................................... 18 
Introducing a Gain Stage ...................................................................................... 20 
MotoHawk Data Storage Blocks ........................................................................... 22 
MotoTune Options ................................................................................................ 23 
Calibration and Probing Blocks ............................................................................ 24 
Gathering Data ..................................................................................................... 25 
Throttle Control Challenge.................................................................................... 29 
Fault Detection on Throttle Pedal ......................................................................... 33 

CHAPTER 2. FAULTS ................................................................................. 34 
Introduction ........................................................................................................... 34 
MotoHawk Fault Theory of Operation .................................................................. 34 
Fault Blocks .......................................................................................................... 36 

CHAPTER 3. CAN ..................................................................................... 43 
Introduction ........................................................................................................... 43 
CAN Bus Basics ................................................................................................... 43 
Payloads ............................................................................................................... 44 
Protocols ............................................................................................................... 45 
MotoHawk CAN Theory of Operation ................................................................... 46 
Using CANKing to Observe the Bus ..................................................................... 48 
Basic CAN Blocks ................................................................................................. 51 
CAN Channel Definition ........................................................................................ 51 
CAN Transmit Raw ............................................................................................... 52 
CAN Receive Raw ................................................................................................ 53 
Slot Properties ...................................................................................................... 54 
Slot Receive Trigger ............................................................................................. 55 
Example of Basic CAN Blocks ............................................................................. 55 
Advanced CAN Blocks ......................................................................................... 57 
Message Definition Structure ............................................................................... 58 
 
 
 
 
 
 
 
 



MotoHawk Resource Guide Manual 36333A 
 

 

 

ii Woodward 

Contents (cont'd.) 
 
 

CHAPTER 4. MEMORY MANAGEMENT ......................................................... 63 
Introduction ........................................................................................................... 63 
Calibrations ........................................................................................................... 65 
Probes .................................................................................................................. 65 
Overrides .............................................................................................................. 65 
Block Parameters ................................................................................................. 66 
Data Storage Blocks ............................................................................................. 72 
MotoHawk Lookup Tables .................................................................................... 75 

CHAPTER 5. BOOT KEY RECOVERY ............................................................ 78 
CHAPTER 6. MOTOHAWK ACRONYMS AND TERMS ...................................... 79 
CHAPTER 7. SERVICE OPTIONS .................................................................. 83 
Product Service Options ....................................................................................... 83 
Woodward Factory Servicing Options .................................................................. 84 
Returning Equipment for Repair ........................................................................... 84 
Replacement Parts ............................................................................................... 85 
Engineering Services ............................................................................................ 85 
How to Contact Woodward ................................................................................... 86 
Technical Assistance ............................................................................................ 86 

REVISION HISTORY .................................................................................... 87 
 
 
 
 
 

Illustrations and Tables 
 
 
Figure 1. Electronic Throttle/Slider Potentiometer Schematic .............................. 29 
 
Table 1. Electronic Throttle Connector Pinout ...................................................... 29 
 
 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward iii 

Electrostatic Discharge Awareness 
 
All electronic equipment is static-sensitive, some components more than others. 
To protect these components from static damage, you must take special 
precautions to minimize or eliminate electrostatic discharges. 
 
Follow these precautions when working with or near the control. 
 
1. Before doing maintenance on the electronic control, discharge the static 

electricity on your body to ground by touching and holding a grounded metal 
object (pipes, cabinets, equipment, etc.). 

 
2. Avoid the build-up of static electricity on your body by not wearing clothing 

made of synthetic materials. Wear cotton or cotton-blend materials as much 
as possible because these do not store static electric charges as much as 
synthetics. 

 
3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam 

cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or 
folders, plastic bottles, and plastic ash trays) away from the control, the 
modules, and the work area as much as possible. 

 
4. Do not remove the printed circuit board (PCB) from the control cabinet 

unless absolutely necessary. If you must remove the PCB from the control 
cabinet, follow these precautions: 

 
 • Do not touch any part of the PCB except the edges. 
 
 • Do not touch the electrical conductors, the connectors, or the 

components with conductive devices or with your hands. 
 
 • When replacing a PCB, keep the new PCB in the plastic antistatic 

protective bag it comes in until you are ready to install it. Immediately 
after removing the old PCB from the control cabinet, place it in the 
antistatic protective bag. 

 

 

To prevent damage to electronic components caused by improper 
handling, read and observe the precautions in Woodward manual 
82715, Guide for Handling and Protection of Electronic Controls, 
Printed Circuit Boards, and Modules. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

iv Woodward 

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 1 

Chapter 1. 
General Information 

 
 

About MotoHawk 
 
MotoHawk® is a controls system application development tool that allows the 
user to create Simulink® diagrams that run on rugged, automotive quality 
embedded control modules. The tool allows you to access the inputs and outputs 
of the modules, schedule when to execute tasks, manipulate the memory usage 
of the module, create a calibration interface, and most importantly, allows a 
single step build of the entire application. It extends Simulink and Real-Time 
Workshop Embedded Coder to generate code necessary to interface with the 
resources of the modules and control their behavior. 
 
MotoHawk is built on Woodward’s ControlCore® production software framework 
and supports a variety of applications using both single controller and distributed-
by-wire implementations. It is intended for control feature development, vehicle 
calibration and fleet testing. 

Features  

• Auto-code generation of Simulink/Stateflow models using Embedded 
Coder/Stateflow Coder  

• Rugged controllers for prototyping and production  
• ControlCore enabled software  
• Off-the-shelf engine control libraries  
• Calibration using MotoTune or CCP based tools  
• Responsive engineering and support services for a wide-range 

of applications  
• Electronic control modules available for development, fleet and 

production  

Benefits  

• Simpler, faster development  
• Better testing using real ECM hardware  
• Quickly develop and enhance software features in Simulink  
• Analyze and control real-time OS from Simulink/Stateflow  
• Direct access to the production controller’s I/O from Simulink  
• Readable documentation of system design automatically created 

from models  
• Lower cost for fleet testing; outfit an entire test fleet with rapid 

prototyping capability  
• Custom block-set allows for integration of both handwritten and 

auto-code 

 

® Simulink is a trademark of The MathWorks, Inc. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

2 Woodward 

ECM565-128 Developer’s Kit 
 

Parts List 
ITEM NO. DESCRIPTION 

1 ECM565-128 development module 
2 ECM565-128 harness w/main power relay and fuse 
3 Power switch assembly w/SmartCraft™ connector 
4 SmartCraft to dual DB-9 adapter (GMLAM) 
5 SmartCraft to dual J1939 adapter 
6 10’ SmartCraft cable w/terminating resistors 
7 10’ SmartCraft cable 
8 SmartCraft terminating connector 
9 6-port SmartCraft hub (2) 
10 Optically isolated 4-port USB hub † 
11 USB to dual CAN adapter 
12 Green Hills Software MULTI2000™ compiler* 
13 Software installation CD* 
14 Security dongle* 
15 Boot key 

 
(TM) SmartCraft is a trademark of the Mercury Marine division of Brunswick Corporation 
 
(*) Green Hills software, security dongle programming, and applications included on 
software CD are subject to your specific order and may not be included in shipment. 
 
(†) USB hub may not included in kit as it is part of the Kvaser hardware and in future 
orders may not be included. 
 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 3 

System Requirements 
 

• Windows XP (any SP) or later (Windows 7 on MotoHawk 2010a and 
higher) 

• Pentium III or IV, Xeon, Pentium 
M, AMD Athlon, Athlon XP, 
Athlon MP3.  

• 345 MB disk space 

• 512 MB RAM (1 GB or more 
recommended) 

• 16, 24, or 32 bit OpenGL capable 
graphics adapter (strongly 
recommended) 

• Microsoft Windows supported 
graphics accelerator card, printer, 
and sound card 

• 1400x1050 display (min) 
(1600x1200 strongly recommended) 

 
Note: User should also consider system requirements for MATLAB, 
Simulink, RealTime Workshop, and RealTime Workshop Embedded Coder. 
 
 

MATLAB™ Installation Procedure 
 

1. Insert CD in drive. If the installer does not start automatically, click 
Start/Run and double click on Autorun.exe. 

2. Follow the instructions on the screen. 
Note: If you have a network license for your installation you will need to 
obtain a demo license from The Mathworks before training. 

3. Install all of the following: 
• MATLAB 
• Simulink 
• Real Time Workshop 
• Realtime Workshop Embedded Coder 

4. It is strongly recommended that you also install: 
• Stateflow 
• Stateflow Coder 

 
 
 
 
 
 
 
 
(TM) is a trademark of The MathWorks, Inc. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

4 Woodward 

Green Hills Software Installation Procedure 
 
Insert CD in drive. Click Start/Run and double click Setup.exe. Follow on-screen 
instructions. 
 
 
Obtaining a License for Your MotoHawk Compiler 
 
Once you have completed installation of the compiler on the unit that you will be 
using to develop your application, you must generate a request for a license. 
 

 
 

1. Select Programs/MULTI2000,PowerPC v3.6/ Licensing/License Request 
Generator. 

2. Select “OK” at the following screen. 
 

 
 

Each MotoHawk SDK includes one node locked license. Contact your 
sales representative if more are desired. 

3. Indicate which type of computer you have installed the compiler on and 
select “Next.” 

 

 
 

4. Select “Next.” 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 5 

5. The next message window contains the License Agreement. Read it, 
then select “Yes” to continue. 

 

 
 

6. You must accept License Agreement in order to use the compiler. 
7. The next window contains the license request. Print or Save To File, then 

send it. An evaluation license will be sent to the e-mail address indicated 
in the Customer Information window, usually the same day. 

 

 
 

8. Follow the instructions that accompany the license file. A hard copy of 
the License Agreement was included with your SDK. 

9. FAX a signed copy to (805) 965-6343, Attn: Mickey Neal. Or email a 
copy to Mickey.neal@ghs.com 
A permanent license will be e-mailed to the address indicated in the 
Customer Information window (usually the next business day.) 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

6 Woodward 

GCC Compiler Installation Procedure 
 
MotoHawk 2009b and higher supports the use of the GCC compiler as Beta Trial. 
This is useful for getting up and running quickly or for initial development. 
 
Note: GHS is the recommended compiler for production programs. 
 

1. The GCC PowerPC eabi compilers are online at www.woodward.com. 
2. Navigate to Support at the top pull down menu, and select Software. 
3. The software is searchable by product name, key word, etc. Enter GCC 

in the search field. 
Note: There are two GCC compilers. The “SPE” version is for 55xx 
modules such as the ECM-5554-112. The “non-SPE” is for 5xx modules 
such as the ECM-565-128 or ECM-563-48.  

4. Download the file to a temporary location. 
5. Unzip the file. DO NOT run the installer from Winzip. 
6. Run the installer. 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 7 

MotoHawk Installation Procedure 
 
MotoHawk Software is also online at www.woodward.com. 
 

1. Navigate to Support at the top pull down menu, and select Software. 
2. Search the software products by name: MotoHawk, MotoTune, 

MotoServer Runtime 
3. Download the files to a temporary directory, unzip the files, and then 

install downloads in the following order following the instructions for each 
one: 

• MotoServer Runtime 
• MotoTune 
• MotoHawk 

4. Be sure your MotoHawk license dongle is in the USB port of your PC and 
run the MotoHawk Version Selector to associate your MotoHawk 
installation with your version of MATLAB. 
If your version of MotoHawk is shown in grey, the MATLAB and 
MotoHawk versions are not compatible. 
(Start Programs Woodward MCS MotoHawk) 
 

 
 
 

You must use Windows Add/Remove programs to 
uninstall all previously installed versions of MotoServer 
and MotoTune prior to installation. 

It is recommended that you DO NOT plug the adapter 
cable into the USB port prior to installing the 
MotoServer and MotoTune. 

It is also recommended that you download the CAN  
King software — a useful tool when working with CAN 
networks. 

 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

8 Woodward 

Creating an Application in MATLAB™ 
 
Once you have completed the installation of your software, create a model to 
verify operation. 
 

1. Make sure your silver license dongle is in the USB port of your PC and 
start MATLAB: Double click on the MATLAB icon on your desktop or 
select from the programs menu. 

2. The following screen will appear. 
 

 
 

3. At the command line type: motohawk_project MyFirstProject. 
4. Press the Enter key.  

The following window will open. (Allow 1-2 minutes for the application to 
complete.) 

 

 
  

5. Take note of the: 
• Target Definition 

• Main Power Relay 

• Trigger blocks 

These comprise a rudimentary 
system. The executable algorithms 
reside in the Triggered Subsystem 
(foreground). 

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 9 

 

You must change your Target Definition Block to match 
your Hardware. Double click on the block and select 
your ECM model from the dropdown list. 

It is recommended that the Target Definition Block be 
set to your hardware as the first step, as this defines 
the available resources for the model. 

 
 

Building Your Application 
 

1. Press CTRL+B 

The MATLAB window should look like this: 
 

 
 
 

2. If the message says “Successful MotoHawk Generation (NoBuild)”: 

b) You may need to place a Tool Chain Definition Block in your 
model. Drag a Tool Chain Definition Block from MotoHawk/Build 
library in Simulink into your model and select your installed 
compiler. 

c) Check your Green Hills compiler installation: Type 
“motohawk_check_ghs” (a zero indicates that you have a 
problem with your Green Hills compiler installation). 

 
3. If you get an error, check with your instructor or email the log file 

(MyFirstProject.log in this example) to: MCSsupport@Woodward.com. A 
technical support representative will contact you. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

10 Woodward 

4. Once you have successfully built your default application, open Windows 
Explorer and navigate to the C:\ECUFiles directory. 

 
5. You will see a number of subdirectories including Programs and 

TDBDLL. These subdirectories contain, respectively, the .srz and .dll 
files which are used by MotoTune to program the ECU. 

 
 

Assembling Your Kit 
 

1. Install your isolated USB hub and apply power. 
2. Insert your silver MotoTune dongle into the hub. 
3. Connect the USB to CAN adapter and wait for Windows to auto-detect it. 

When the New Hardware window appears select “No, not this time” and 
click on “next.” Then, let Windows automatically install the drivers. 

4. Connect the Development Harness to the module. (See datasheet for 
proper positioning.) 

 
 

5. Connect Power branch to a 12 volt source (9V to 16 V, 3A min.) Attach 
the SmartCraft connector, USB to CAN adapter, and the power switch to 
the 6-position hub. 

 

 
  

6. The boot key is not needed for normal programming or calibration so it 
can be set aside. Errors in configuration, logic and/or other programming 
made during program development (via .srz file) can cause a persistent 
loss of CAN communications with the module under development. If this 
happens, apply the boot key to force the module into reboot mode, 
reloading the module with functional program code (a known, valid .srz 
file) in order to allow resumption of module communication.  

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 11 

Starting MotoTune 
 

1. From the Start menu (or desktop shortcut) select 
All Programs/MotoTools/MotoTune.  

2. The following window appears.  
 
 
 
 
 
 
 
 
 

3. The name that was used to order your kit should appear at the top of the 
window. If it indicates [Unlicensed,] then you need to insert/reinsert the 
silver dongle. 

 
 

Checking MotoServer 
 

1. Right-click on the Satellite Dish icon for MotoServer (located on the 
system tray). 

2. Select “Ports”. 

3. If not already listed, add location PCM‑1 as a CAN type port with Access 
Level 4; check the box on the list; and click on “Apply”. 

4. You are now ready to connect to the module. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

12 Woodward 

Programming the Module 
1. Turn power on and apply ECUP signal via power switch. 
2. Select File/Program, in the MotoTune window. The following pop-up 

appears: 
 

 
 

3. This is the file created when you pressed CTRL+B. 
4. Double-click on the .srz file in the window. 
5. The Program ECU status pop up appears.  

If the Program ECU status pop-up doesn’t advance to “Connecting,” 
check your CAN to USB and SmartCraft connections. If they are 
operational, turn power off. 
 

                    
 

6. Install the BOOT KEY from your kit onto the SmartCraft hub.  
ECU555-128 users will also need to move the fuse from the Normal 
socket to the BOOT socket to insure boot loader is invoked. 

7. Double-click on the .srz file and apply power. 
8. If this does not work, check with your instructor or send an e-mail to: 

MCSsupport@woodward.com 

9. When you see the “Programming Successful” message you are ready to 
create a display for your application. 

 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 13 

Creating a Display 
 

1. In the MotoTune Window, select File/New/Online Display/Calibration. 
2. Select Display on the pop-up and click on “OK.” 

The Create New Display window appears. 
 

 
 
 

3. Give your display a meaningful name (ie. MyFirstProjectDisplay). 
4. Select “Next” for default Row and Column settings. 
5. Select “Next” for default Status Bar and Tab Control settings. 
6. Use default Sheet1 by clicking on “Finish.” The following should appear: 

 

 
 

7. Click on the “+” next to the MyFirstProject folder (listed on left side of the 
MotoTune window). 

8. Open the following folders: 

• Foreground folder 
• Controller folder 
• Plant folder 

9. Double-click on the Foreground block in your Simulink model. 
Note the one-to-one correspondence between the MotoTune folders and 
the subsystems in your model. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

14 Woodward 

Checking Operation 
 

1. Open the System folder, then the Performance folder. 
2. Drag each of the display variables onto the spreadsheet. 

Note that your system is running — these are its vital statistics. 
3. Cycle the power switch off, then back on. 

Note that the display values briefly disappear, then return. 
4. The Main Power Relay can be heard releasing and engaging. 
5. Close this model by clicking on the red “X” in the upper right-hand corner. 
6. You will be prompted to save the model. We are done with this one — 

you may save or not. 
 
 

First Application 
 

1. Click the Simulink icon          located on the top of the MATLAB window. 
2. Simulink’s Library Browser appears 

 
These are the Simulink and MotoHawk 
blocks which are used for creating your 
application models. 

3. In the MATLAB window, move up one 
level to the “work” directory. Create a 
new directory “MySecondProject” and 
double-click on it. 

4. In the library browser, click here. 
A new model window opens. 

5. Note the status window in the lower left 
hand corner. It indicates ODE45 which 
stands for Ordinary Differential Equation 
4th and 5th derivative (Dormand-Prince 
method,) which is the type of solver that 
will be used for simulations. 

 
 
 
 
 
 
 
  

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 15 

Generating Embedded Code 
In order to generate embedded code we must change to a fixed-step discrete 
solver as follows. 
 

1. Select “Simulation” at the top of the window, then “Configuration (or 
Simulation) Parameters”. 
The following window appears. 

 

 
 

2. Using the pull downs, change Type to Fixed-step, and Solver to Discrete 
(no continuous states.) 

3. Click on “Apply” and “OK”. 
4. In the library browser, click on MotoHawk. Drag the MotoHawk Target 

Definition block from the bottom of the list into your model.  
Double-click on the block and verify that the target module is correct for 
your kit (80 pin, 128 pin, etc). 
The Memory Layout should be DEV. 

5. Click on “Apply” and “OK”. 
6. From the Trigger Blocks library, drag a MotoHawk Trigger block into your 

model. Double-click on the block to open the dialog box and set the pull-
down to FGND_RTI_PERIODIC. 

 

 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

16 Woodward 

7. Click “Apply” and “OK”. 
8. From the Extra Development Blocks library, drag a Main Power Relay 

block into your model. 
(Default settings will serve our purposes for now.) 

9. From the Ports & Subsystems library drag a Function-Call Subsystem 
block into your model. Double-click on this block and a new window 
appears. 

10. From the Sources library, drag the Sine Wave block from the bottom of 
the list into your model. 

 
11. Click on Sinks and drag a Scope block into your model. 
12. Click on Math Operations and drag in a Gain block. 
13. Note the greater than (>) symbols on each block. These are Simulink 

ports that are used to control the signal flow through your model. The 
Sine Wave block, being a signal source, has only one (output) port. 
Likewise the Scope block, being a sink, has only one (input) port, while 
the Gain block has one of each.  
More complex blocks will have more input or output ports or both. 

14. Select the Sine Wave block, hold down the CTRL key and click on the 
Gain block.  
Notice how Simulink connects the two blocks. This technique can be 
used to “wire” the blocks to one another and is especially useful when 
wiring signals to or from consecutive ports on a block. Simulink will start 
at the top and work down either side (in or out) of the block. 

15. At the top level of your model, connect the trigger block to the subsystem 
block. Select File/Save As. Give your model a meaningful name (ie. 
MySecondProject) and click Save. 

16. Press CTRL + D. 
Notice that Simulink has generated an error message and highlighted the 
offending subsystem and block — informing us that “only constant or 
inherited (-1) sample times are allowed in triggered subsystems.”  

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 17 

17. Double-click on the Sine Wave block to open its dialog box. 
At the bottom of the dialog box the Sample Time is zero. As you may 
have guessed this means continuous. 

18. Change it to -1 (inherited.) 
The subsystem will now inherit its sample time from the parent (level 
above) which is FGND_RTI_PERIODIC or 5 milliseconds. 

19. Press CTRL + D again. 
No error messages are generated. 

20. Double-click on the scope — a pop-up window appears complete with 
grid and axis markings. 

21. Select Simulation/Start — a Sine wave appears. 
 

                                 
 

22. Double-click on the Gain block, change to 100. 
The small triangle in the middle of the window at the top can be used to 
start the simulation. Note that the Sine wave has changed. 

23. Click on the binoculars icon. 
This will scale the display for your input automatically. Clicking on the 
name of the subsystem (Function-Call Subsystem) opens it for editing. 

24. Change the name to “Foreground.” 
25. Press CTRL + B. 

MotoHawk builds your application. 
26. In the MotoTune Display Explorer pane, right-click on Display1 on 

[PCM-1.]  
27. Select “Save As” and give it a meaningful name (ie. 

”MyFirstProjectDisplays”). Use pulldown to specify the folder. 
Note that while MyFirstProjectDisplays contains only 
MyFirstProjectDisplay, it may contain others that provide different views 
into the system. 

28. Right-click on MyFirstProjectDisplays and select Close. 
Currently, this is the only way to close one display and open another in 
MotoTune. 

29. Select File/Program and download MySecondProject into the module. 
30. Create a new display as above. (ie. “MySecondProjectDisplay”). 
31. Drag in your System Performance variables and observe via your display 

and the Main Power Relay that your application is running. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

18 Woodward 

Modifying the Application 
 
This procedure allows you to gain some control over its operation. 
 

 
1. Double-click on the Foreground block in your model; select the Sine 

wave generator and the gain block. 
Press the delete key to remove these blocks. 

2. From the Calibration & Probing Blocks library, drag a motohawk_calibration 
block and a motohawk_probe block into your model. 

3. From the Extra Development Blocks library, drag in a motohawk_abs_time 
block. 

4. Double-click on the Calibration block and change the name to ‘TwoPi’ 
and the value to 6.28318. 
The single quotes must be used. 

5. From the Math Operations library, drag in a Product block. 
6. Double-click on it and change the number of inputs to 3. 
7. Right-click on the TwoPi block and drag down. 

A duplicate block is added to your model. 
8. Double-click on the new block and change its name to “f” and its value to 1. 
9. Wire these 3 blocks to the inputs on the Product block. 
10. From the Math Operations library, drag in a Trigonometric Function 

block. 
If it is not already set to Sine, change it. 

11. Wire the output of the Product block to the input of the Trigonometric 
Function block. 

12. Wire the output of the Trigonometric Function block to the Scope block.   



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 19 

13. Double-click on the Probe block and change its name to Sine. 
14. Place the cursor over the input port of the “Sine” Probe block. 

Notice that the cursor changes into a cross-hairs. 
15. Click on the port and drag to the wire connecting the Trigonometric 

Function block and the Scope. 
A connection dot appears on the wire and a wire connects to the Sine 
Probe block. 

16. Your model should look similar to this 
 

 
 

17. Press CTRL + D (see that there are no errors). 
18. Press CTRL + B (verify that the build is successful). 
19. Close the display in the MotoTune Display Explorer pane as above and 

program the module with your modified application. 
20. Select File/New and create a new calibration. 
21. In the Calibration Explorer pane, Click on the “+” next to the 

MySecondProject folder. 
22. Double-click on Foreground. 

A Calibration sheet opens in the right hand pane of the MotoTune 
window. 

23. Create another display sheet and drag it down or to the side such that 
both are visible. 
You should be able to see the Sine value changing. 

24. Right-click on the cell containing the Sine value and select Properties. 
Click on Set Fast and verify that the Add to chart/log box is checked. 
Click OK. 

25. Select Chart/Open Chart. 
A pop up appears displaying your Sine wave. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

20 Woodward 

26. In the Foreground sheet change the “f” value to 2. 
Note the frequency changes when the Enter key is pressed. 

27. Change “f” to 0.5 – observe change in chart. 
Occasionally, flat spots will appear on the chart – a result of Windows 
OS “garbage collection” and other operations, and is no cause for 
concern. 

 
 

Introducing a Gain Stage 
 
There are two methods for introducing a gain stage. 
 
Method 1: Add a Gain block from the Math Operations library. 

Method 2: Add a Product block from the same library and a Calibration block 
from the MotoHawk library. 

In the case of a Gain block; Real Time Workshop will allow us to change the 
Gain value during simulation but our objective is to generate embedded code. 

The RTW Embedded Coder treats a Gain block as a hard-coded constant which, 
precludes changes at run-time. Therefore, we will use the second approach; an 
“Amplitude” calibration block and a product block. 

 
1. Select the wire connecting the Trigonometric Function block and the 

Scope and press the Delete key. 
2. Right-click on the TwoPi block and drag a copy to one side. 
3. Double-click on the new block and change the name to ‘Amplitude’ and 

the value to 10. 
4. Likewise, copy over the product block and change its Number of inputs 

to 2. 
5. Connect the new calibration block and the Sine block to the product 

block inputs. 
6. Wire the product block output to the Scope and Sine probe block. 
7. Your model should look similar to this: 

 

 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 21 

8. Press CTRL + D and verify that there are no errors. 
9. Then press CTRL + B to build it. 
10. Program the module with the new application. Set up your display and 

calibration windows in MotoTune as before. 
11. Open a chart for the Sine probe and verify the amplitude value. 
12. Now change the amplitude to 100. 

Note that the display is rescaled for the new value. 
If a Cosine signal of the same amplitude is also needed, hold down the 
Shift key and select the Amplitude, Trigonometric Function, Product, and 
Sine Probe blocks from the Right side of the drawing. 

13. Right-click and drag down to copy them. 
14. Wire the blocks together as before, connecting the input of the 

Trigonometric Function to the output of the Product block on the Left. 
15. Change the Trigonometric Function to Cosine and rename the Probe 

block accordingly. 
16. Your model should look similar to this: 

 

 
 

17. Press CTRL + D. 
18. Read the error message. Simulink is complaining that the name 

‘Amplitude’ is not unique. We could rename this, but we know that the 
value is important and it would be convenient to be able to re-use it. The 
way to do this is to use the MotoHawk Data Storage blocks. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

22 Woodward 

MotoHawk Data Storage Blocks 
 

1. From the library, drag a motohawk_data_def block and a 
motohawk_data_read block into your model. 

2. Double-click on the motohawk_data_def block, change the name to 
‘Amplitude’, change the Storage Class to constant, and verify that 
“Attach a VarDec for Visibility from MotoTune” is checked. 

3. Highlight the two calibration blocks called “Amplitude” and delete them. 
4. Double-click on the motohawk_data_read block, change the name to 

‘Amplitude’, and drag it over to one of the loose wires left by the previous 
deletion. 

5. Right-click on the motohawk_data_read block and drag a copy over to 
the other loose wire. 

6. Press CTRL + D again. 
No errors should be generated. 

7. Build your model, program the module, and set up your display and 
calibration windows as before  

8. Right-click on either the Sine or the Cosine value and set the properties to: 
• Fast 
• Add to chart/log 
• Apply to all 

9. Click OK. 
10. Select Chart, Open Chart and observe your signals. 
11. In the calibration pane change the Amplitude value and observe the 

changes in your signals. 
For calibration values that are used in only one place in the model, the 
motohawk_calibration block is a convenient means of introducing the 
variable. 
When a calibration is to be used in more than one place, a 
motohawk_data_def block with motohawk_data_read blocks is best. 

12. Double-click on the motohawk_data_def block. 
A brief description of the block’s parameters appears at the top of the 
dialog box. In addition to the variable’s name, initial value, and storage 
class, we can specify a data type (click on the pull down to see them), 
and an Output Reference Data type (for pointer based operations.) 
Storage Class Parameter allows us to specify the type of resource that 
will be allocated for the variable. 
Constant, as the name implies, does not change unless a tool changes it. 
Volatile will be re-initialized at power up. 
Non-volatile will be preserved across a controlled shut-down/power-up 
cycle (when MPRD block or similar construct is included in the model). 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 23 

MotoTune Options 
 
Attach VarDec for Visibility 
 
Selecting ‘Attach VarDec for Visibility’ from MotoTune expands the dialog box, 
giving us more options: 
 

• a choice of which pane to view it in: Calibration or Display 
• the option to restrict Read and Write access level 
• whether to use uploaded calibration values from MotoTune 
• how to view the value: Number, Enumeration (on, off, running, stopped,) 

or Text 
 
Select the Help button at the bottom of the dialog box to view remaining options. 
If the MPRD block is not used, a motohawk_store_nvmem must be included in a 
background subsystem in order to execute the transfer to EEPROM (with the 
caveat that there are a limited number of write cycles for the EEPROM devices.) 
Also, when a revised model is downloaded to the module, the values stored in 
EEPROM will be loaded into RAM unless the structure has changed or the 
RestoreNVFactoryDefaults function is invoked from the System\NonVolatile 
Storage folder in the Display pane. 
Example: You are adjusting calibration values and you decide to change the logic 
in your module (ie. change a greater-than to a greater-than-or-equal-to.) You can 
rebuild the application, reprogram the module, and pick up where you left off, 
without having to up-load the calibration. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

24 Woodward 

Calibration and Probing Blocks 
 
Another useful block is the motohawk_override_abs block from the Calibration 
and Probing library. 

1. Drag one into your model and place it over the wire connecting the first 
product block to the trigonometric function blocks. 
Note: Simulink breaks the wire, making the necessary connections. 

2. Double-click on the block and give it a meaningful name 
(ie. “Angle_Override”). 

3. Click on Apply and OK. 
4. Press CTRL + D and CTRL + B. 
5. Program the module and set up your Display and Calibration panes as 

before. 
6. Your model should look similar to this: 

 

 
 

7. Drag the two new parameters from the Foreground\Angle_Override 
folder into the Display spreadsheet. 

8. Start a chart for your Sine and Cosine waves. 
9. Set Angle_Override_new to 3.14. 
10. Click on the value for Angle_Override_ovr. 

A pull-down arrow appears next to the cell. 
11. Click on the pulldown and select override. 
12. Look at your chart to see the effect of this change after pressing Enter. 

As expected, the Sine value goes to 0 while the Cosine value goes to -1. 
The override is a display, not a calibration. 
Display or Calibration... What’s the difference? 
Displays allow the engineer or technician to monitor or manipulate 
signals in the system to establish conditions necessary for testing or 
calibration.  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 25 

The changes made via Display variables are not saved in the .dis file and 
so do not persist past the MotoTune session. 
On the other hand, Calibration changes are saved in a .cal file and can 
be Merged with or Transfer Upgraded into another calibration (or .srz) file 
to create a new .cal (or .srz) file which contains the desired changes. 

 
 

Gathering Data 
 
We have seen how a data definition block is used to introduce a constant into the 
system. Now, look at how it can be used to gather data from our system. 

1. From the Ports & Subsystems library, drag in an enabled subsystem and 
delete the scopes.  
Double-click on the enabled subsystem and a new window opens up. 

2. Delete the output port and copy the input port by right-clicking on port 1. 
3. From the commonly used blocks library, drag in a constant block and a 

sum block. 
4. From the math operations library, drag in a math function block. 
5. From the discrete library drag, in a unit delay block. 
6. Right click to copy the constant block. Set the value of the new 

(constant1) block to 200. 
7. Double-click on the math function block and use the pull-down to select 

mod (modulo) function. 
8. Click on Apply and OK. 
9. Right click on the mod block and select format and flip block. 

Likewise flip the unit delay and constant1 blocks. 
10. Wire the constant and mod blocks to the sum block inputs. 
11. Wire the output of the sum block to the input of the unit delay block and 

the outputs of the unit delay and constant1 blocks to the inputs of the 
mod block. 

12. From the data storage blocks library, drag in a motohawk_data_write 
block and make a copy of it. 

13. Double-click on the first data write blocks. Name it SineData. 
14. Using the pull down, set data structure to vector. 
15. Name the second data write block CosineData and make it a vector as 

well. 
16. Wire the idx input of each data write block to the output of the sum block. 
17. Wire input1 to the data input of the SineData block and input2 to the 

CosineData block. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

26 Woodward 

18. Your enabled subsystem should look like this: 
 

 
 

19. Save file and close this window. 
20. In the Foreground window, right-click on the Amplitude data definition 

block and make two copies. 
21. Double-click on the first copy, change the name to SineData, change the 

Storage Class to NonVolatile, and change MotoTune Window to Display. 
22. Place the following in the Initial Value box: zeros (1,200). 
23. Click Apply and OK. 
24. Double-click on the second copy, change the name to CosineData, 

Storage Class to NonVolatile, and MotoTune Window to Calibration. 
25. Click Apply and OK. 
26. Place the following in the Initial Value box: ones (1,200). 
27. Copy the ‘f’ calibration block and rename it. 
28. Log and set the initial value to zero. 
29. Wire the Sine signal to In1 and the Cosine signal to In2 of the enabled 

subsystem. 
30. Wire the Log block to the input at the top of the enabled subsystem. 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 27 

31. Your model should look like this: 
 

 
 

32. Press CTRL - D. If there are no errors, press CTRL - B. 
33. Start MotoTune and create a new display and a new calibration. 
34. In the display pane expand MySecondProject and Foreground. 
35. Drag SineData into the worksheet. 

Note that all of the values have been set to zero. 
36. In the calibration pane, expand MySecondProject. 

Note the folder and sheet of paper, both named Foreground. 
Expand each to see their contents. 
The folder contains the CosineData vector array (another sheet of 
paper). The sheet of paper contains the scalar variables. Both have been 
defined in the Foreground layer of the model and the default group string 
was used. 

37. Double-click on the Foreground and the CosineData sheets of paper and 
arrange them in the window. 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

28 Woodward 

38. Your window should look like this: 
 

 
 

 
 

39. Note that the CosineData array contains all 1s. 
Changing the Log variable to 1 enables the subsystem that logs the data. 
The SineData array changes immediately, but the CosineData does not. 

40. Select Calibration-Refresh Volatile Map (or press F5) and the 
CosineData array is updated. 
The Sine Data array may be used to examine the Sine values and can 
be copied and pasted into a spreadsheet for analysis. 
If there is no need to edit the values offline (factory defaults are a good 
starting point for an adaptive algorithm,) the Display variable will suffice. 
If, however, the values are best customized based on which variety of 
installations it will be used on, then the Calibration variable is the one to 
use.   



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 29 

Helpful Tips 
 
Here are two ways to help minimize confusion: 

1. Utilize the Show MotoTune Group check box and explicitly name the 
MotoTune Group String. 

2. Place the data definition blocks in the enabled subsystem. 

The system designer needs to decide the best way to organize these data 
structures. 

A CTRL - B is required to generate a new DLL. 
 
 

Throttle Control Challenge 
 
The following example uses a slider potentiometer and an electronically 
controlled throttle assembly: (Woodward P/N: 6945-5001 40MM BOSCH ETC 
[A 289 000 464-999]). 
 
Table 1 lists the signals and their corresponding connector pin numbers. 
 

 
 

Figure 1. Electronic Throttle/Slider Potentiometer Schematic 
 
 
 

Table 1. Electronic Throttle Connector Pinout 
 
 
 
 
 
 
 
 
 
 
  

PIN NUMBER SIGNAL NAME 
1 Motor- 
2 XDRG 
3 XDRP 
4 Motor+ 
5 POT2 
6 POT1 



MotoHawk Resource Guide Manual 36333A 
 

 

 

30 Woodward 

1. The Slider pot should be connected to XDRP, XDRG, and AN1M. POT1 and 
POT2 should be connected to AN2M and AN3M respectively. 

2. Consult the datasheet for your module to determine the appropriate wire 
number for each of the signals. 

3. At the Simulink command line, use the motohawk_project instruction to open 
a new project. Name it ThrottleControl. 

4. Double-click on the Foreground block and delete the Controller and Plant 
blocks. 

5. From the MotoHawk Analog I/O Blocks library, drag in a motohawk_ain 
(Analog Input) block. 

6. Select “Allow I/O pin to be calibrated from MotoTune,” and name the block 
ThrottlePedal. 

7. Select AN1M from the pull down and click on “Apply” then “OK.” 
8. Drag in a Gain block and a motohawk_probe block. 
9. Wire the ThrottlePedal block to the Gain block and the Gain block to the 

motohawk_probe block. 
10. Set the Gain block Gain to 100/1023. 
11. Name your probe SetPoint. 
12. Press CTRL - D. 

In some versions of MATLAB, you may get a warning regarding 
datatypes.  
In this instance, the A/D on the 555 is 10 bits, which fits into a unit16.  
Other resources have the following data types: 

• Digital Inputs and Outputs are Boolean. 
• Frequency Inputs and Outputs are uint32 (scaled by 0.01Hz). 
• Duty Cycle Inputs and Outputs are int16. 

13. Go to the top level of your model, double-click on the Target Definition block 
and click on the “Floating Point Data Type” pull down. 

The choices are:  

• single (32 bits)  
• double (64 bits)  
• disabled 

These determine the way that memory will be allocated during code 
generation. The default is single (32 bits) and should not be changed 
unless greater resolution is required or the target processor does not 
support floating point operations. 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 31 

14. Return to the Foreground level of your model and drag a Data Type 
Conversion block in from the Signal Attributes library. Place it between the 
ThrottlePedal block and the Gain block. 

15. Press CTRL - D again. 
16. There should be no errors reported. 
17. From the Format menu select Port/Signal Displays and check Port Data 

Types. 
18. The data type appears adjacent to each wire. This is a convenient way to 

verify that your data types are consistent in your model. 
19. Make copies of the analog input, data type conversion, gain, and probe 

blocks. 
20. Highlight them and select Format-Flip Block (or CTRL - I). 
21. Select AN2M for the analog input, name the probe Feedback. 
22. Drag in a motohawk_pwm block from the Analog I/O Blocks library and select 

H1 as the resource. 
23. Drag in a motohawk_calibration block. Name it ETC_ Frequency and set the 

Default Value to 5000. 
 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

32 Woodward 

Proportional Control Example 
1. To make a proportional control like the one shown below: 

Add a summing block. Copy and modify the gain block and data 
conversion blocks. 
When you first wire in your blocks, the data type adjacent to each wire 
will indicate double (MATLAB’s default), but when you press CTRL - D 
they are updated to indicate the appropriate data type. 

 

   
2. Press CTRL - B to build your model and use MotoTune to download it to 

the module. 
3. Operate the Throttle Pedal slider and observe the behavior. 

This model is a simple proportional control. Realistically, a more complex 
control is required. 

  

This value represents the difference, or 
error, between the Throttle Pedal Value 
and the actual Throttle Pedal Position. 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 33 

Fault Detection on Throttle Pedal 
 
The next model introduces rudimentary fault detection on the Throttle Pedal 
Position sensor and adds an integrating term to the command signal. It also 
includes diagnostic probes and calibration for Proportional and Integral gains. 
 

 

 
 
 

1. Modify your drawing to look like the one shown above. 
2. Press CTRL - D to check your model. Then build it using CTRL-B. 
3. Open a display and a calibration in MotoTune. Set up your probes and 

adjust the ETC_Frequency value until the high pitched sound can no 
longer be heard. 

4. Set the Integral Gain to zero and increase the proportional gain until the 
throttle plate exhibits ringing when operated. 

5. Open a chart and increase the Integral Gain until the traces for SetPoint 
and Feedback come together. 
The Error trace should be zero. 



MotoHawk Resource Guide Manual 36333A 
 

 

 

34 Woodward 

Chapter 2. 
Faults 

 
 

Introduction 
 
This chapter covers the basics of faults within MotoHawk. 
 
Faults are used to indicate failures within a system. For instance, if a sensor 
becomes disconnected, the application can detect this out of range condition and 
signal the issue via a fault. 
 
Fault diagnosis usually accounts for 50-70% of the code within any production 
application. In other words, when you have the control logic done but not the fault 
detection, you are only about 1/3 to 1/2 done with your application. 
 
MotoHawk provides a nice set of blocks to help you signal faults and take actions 
as a result of faults. 
 
Faults are nothing more than signals that some logic has found an issue within 
the system. 
 
Fault diagnosis and identification is a complex subject that changes based on the 
application. However, you will find that all good applications at least diagnose 
sensor failure, and should diagnose actuator failures if possible. Why? Because 
wiring harnesses fail, sensors fail, and actuators fail. 
 
Ideally, your application will do these things well: 

• Fault Containment. The act of keeping a fault from propagating to 
other parts of the system. 

• Fault Identification. The act of determining, as precisely as 
possible, the source of the fault. 

• Fault Annunciation. The act of reporting the fault to someone who 
can fix it. 

• Fault Action.The act of adjusting system operation in response to 
the fault. 

 
Some faults are easy to detect — like a signal being out of range. Others can be 
terribly difficult — like a signal stuck in range. Unfortunately, MotoHawk does not 
help you with containment or identification problems. That is the job of the 
application designer. MotoHawk will however, allow you to record the faults, help 
annunciate them and help interface to action code. 
 
 

MotoHawk Fault Theory of Operation 
 
MotoHawk contains a series of blocks that allow you to signal a fault, read the 
fault status, change the fault status, and take fault actions. The easiest way to 
think about this — you have fault signals and fault actions. 
 

• Fault Signals are an indication that a fault has occurred. 
• Fault Actions are what the application should do when various 

faults occur. 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 35 

Routing Multiple Faults to a Single Fault Action 
 
MotoHawk allows you to route multiple faults to a single fault action. This is a 
powerful idiom that will simplify the designer’s job. Because fault actions are 
independent of faults, there is no need to define various levels of seriousness to 
the faults. The seriousness is contained within the application. 
 
For instance, an engine designer may design a fault that detects low oil pressure 
and an action that is capable of shutting down the engine. The designer can then 
decide if low oil pressure is worthy of shutting down the engine.  
 
Often times, this decision cannot be made at design time. You may be building 
an engine that can be installed in a trash truck and a fire truck. Shutting down a 
trash truck because of low oil pressure is probably very desirable so that the 
engine can be repaired. However, most fire departments would just as soon 
pump water onto the fire until the engine is reduced to a pile of molten metal 
rather than shut the engine down. 
 
MotoHawk respects this and allows you to calibrate faults to fault actions, rather 
than requiring the routing be set at design time. This allows a single code build to 
handle both of the example cases with just a change in the calibration. 
 
 
Fault Filtering 
 
Faults also need to have filtering. MotoHawk faults provide an X out of Y test 
which basically says that the fault must be present X times out of Y samples to 
be declared active. 
 
Faults are considered “Suspected” whenever any of the Y number of samples 
have detected the fault but the number is less than X. Faults are “Active” when at 
least X out of Y have occurred. 
 
In addition to filtering, MotoHawk faults have some different behaviors. A Fault 
can be: 

• Disabled. It will not signal a fault even if the X out of Y condition is 
satisfied. 

• Sticky. Once set it will remain set until the next power down or until 
it is explicitly cleared. This setting is handy for detecting transient 
or intermittent faults that may appear and disappear before they 
can be observed in MotoTune. 

• Persistent. A fault that acts like the “Sticky” fault, in that it will 
remain set once the fault conditions occur. But it will remain set 
across a power cycle. A persistent fault once set will remain set 
until it is explicitly cleared. 
 

Fault Actions can be initiated by one or more faults. Any given fault can drive up 
to four fault actions based on various states of the fault (i.e. Suspected or Active). 
The fault action block will report a high Boolean signal when any of the 
associated faults are set. The application designer is then responsible to define 
the proper system response. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

36 Woodward 

Fault Blocks 
 
MotoHawk provides several blocks to define and interact with faults within your 
system. These are located in the MotoHawk Library under Fault Management. 
 
Fault Manager 
 
This block can exist anywhere in your model. You will need only one for the 
model. The storage for the fault manager allows you to control where the fault 
calibration is stored. 

If set to FLASH — the faults can only be calibrated on a development module or 
offline. 

If set to EEPROM — the calibration can be adjusted on any module. 

The access level refers to the security level required of the MotoTune user to 
perform the action. 

The MotoTune group string controls where the Fault calibration will be shown in 
the MotoTune Calibration Tree. 

 
  

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 37 

Fault Definition 

This block defines a fault in your system. Faults must have unique names 
throughout the system. 
 

  
 

 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

38 Woodward 

Set Fault & Clear Fault 
These blocks will set or clear a fault that has been defined elsewhere. 
 
The application is responsible for coordinating when these blocks run— there is 
no coordination done by the Fault Manager. 

 

    
 

 
 
 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 39 

Fault Status 
These blocks allow you to read the status of a single fault or a group of faults. 
 
When reading multiple statuses, the output will be a vector of Boolean values 
corresponding to the fault list. 
 

 
 

  
 

  

Motohawk_get_faults(system)
This is a utility function that will 
retrieve all of the faults located 
in the system and its children. 

Use bdroot to find all faults 
within the model. The fault list 

returned by this function will be 
alphabetized. 



MotoHawk Resource Guide Manual 36333A 
 

 

 

40 Woodward 

Clear All Faults 
This block, when triggered will clear all of the faults. If the fault conditions still 
exist, once the X of Y filters are satisfied, the faults will re-activate. 
 

 
 
Fault Action 
This block defines a fault action. The fault action name must be unique within a 
model. The action will become active when a fault is routed to it either via the 
design or via calibration. The application designer then needs to create the code 
that will execute when the fault action is active. 
 

 
 

 
 
 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 41 

Fault Blocks Example 

 

 
 
Fault Block Exercise Steps 
 

1. Start with motohawk_project(‘Fault1.’) 
2. Remove the existing contents of the Foreground subsystem 
3. Create the model as shown. 
4. Build the model. 
5. Run MotoTune, program the module, and open a display or open the 

FaultExample.dis file. 
6. Notice in MotoTune display explorer, there is a category for Faults that 

contains the display variables for: 

• Active Faults 
• Occurred Faults 
• Suspected Faults 
• Fault Command (to clear faults 

Also, for every Action there is a reason display variable that will tell you 
all of the faults that are causing the particular action. 



MotoHawk Resource Guide Manual 36333A 
 

 

 

42 Woodward 

All of the displays are marquee type displays that will roll through the 
faults and display the fault names. 

7. Open a calibration and notice the Faults category in the Calibration 
Explorer. The Fault Manager is located here. 

8. Open it up. 
The fault manager contains fields that can be set in the Simulink Fault 
Definition Block. They are found here and can be adjusted at run time. 
There is also an extra field, “Test,” that will allow you to force the fault 
active without the input conditions being set. 
Note how the calibration has been adjusted to route some of the faults to 
particular actions. 

 
 

 
 
 
 
 
 
 
 
 

 

Fault 
Manager 

Display 
Variables 

Faults 
Category Faults routed to particular actions 

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 43 

Chapter 3. 
CAN 

 
 

Introduction 
 
The CAN standard was developed to facilitate the communication of data 
between devices in a vehicle. CAN literally means Controller Area Network. 
 
The current standard for CAN is CAN 2.0B with which all Woodward MotoHawk 
controllers are compatible. Most of our modules have at least one CAN port, 
while a few have as many as three. 
 
Sending and receiving messages via a CAN port is incredibly simple. It is far 
easier to send or receive a message via CAN than it is a RS232. However, there 
are a couple of issues that can make it seem daunting — especially when talking 
about CAN protocols like J1939 or SmartCraft. 
 
 

CAN Bus Basics 
 
First, a CAN bus requires at least two participants in order to be a bus. The 
physical connection between devices is a 2 wire cable. The wires are often 
labeled CAN-H and CAN-L. There must be a 120 ohm resistor between CAN-H 
and CAN-L somewhere on the bus called a terminator. The terminator resistor 
can be placed physically anywhere in the bus, but ideally is located at one end or 
the other. You can have more than one terminator, but remember that too many 
cause the bus to stop working. 
CAN bits are transmitted across the bus as either dominant or recessive. 
This means that a dominant bit (a 0) will win over a recessive bit (a 1). All of the 
transceivers on the bus must be operating at the same bit rate (aka the baud 
rate.) All of the transceivers on the bus synchronize to one another by detecting 
the edges between 1s and 0s. Luckily, the transceivers do much of the hard work 
of transmitting and receiving messages. The software needs only load messages 
to be sent and react to incoming messages. The transceivers make sure that a 
message gets out on the bus if possible. Commonly, busses are operated at 
250K baud but can run as fast as 1M baud. The length of the bus is directly 
related to how fast you can run the bus. For reliable communications, the 
maximum range at 250K baud is 100 feet; at 1M baud it is 30 feet. 
All CAN messages are comprised of: 

• An ID of either 11 bits (aka a standard ID) or 29 bits (aka an 
extended ID), 

• A Data Length Field saying how many payload bytes there are. 
This number can be from 0 to 8, and a payload of 0 to 8 bytes. 

Notice that the payload can change sizes. Yes, a perfectly valid message can 
contain no payload at all. You might ask, why you would ever transmit a 
message with no data? Usually to indicate that a module is alive by sending a 
heartbeat to other modules in the system or to represent the occurrence of an 
event.  
Notice as well that IDs can be of two different types. Is it permissible to have both 
types on the bus at the same time? Absolutely. The bus will perform just fine with 
both types of IDs and variable length payloads running across it. Also, messages 
with IDs of the same value but different type are considered totally different 
messages.  



MotoHawk Resource Guide Manual 36333A 
 

 

 

44 Woodward 

So, how are the inevitable bus collisions (times when two modules want to 
transmit at the same time) handled in CAN? Very nicely. 
Remember that all transceivers are synchronized. The two transmitting modules 
will start clocking out their ID bits at the same time starting with the most 
significant bit. As soon as the ID bits differ, the device that is transmitting the 0 
wins the bus (because 0s are dominant) and continues clocking its bits out. The 
device with the 1 in the ID bit, automatically detects that it lost the bus and stops 
trying to transmit, and it will automatically wait until the next transmission slot to 
try again. 
So, this brings us to a couple of rules: 

1. Lower ID values have higher priority on the bus  
(and standard IDs are higher priority than extended IDs) 

2. No two devices can transmit the same ID. 

The first rule is fairly obvious. 0s are dominant, so lower IDs will make it on the 
bus first. The fact that standard IDs are higher priority than extended is caused 
by the transmitting of a 1-in-1 of the early messaged header bits to indicate that 
the following ID is extended. 
The second rule is not as obvious, but will bite you. If two modules tried to send 
the same ID at the same time, neither would know that it did not win the bus. The 
failure would not occur until they had a different bit in the payload. Unfortunately, 
each module will only be informed that its message failed a parity test (due to the 
payload bits being clobbered). Each module will then dutifully retry to transmit. 
Since they are synchronized, they will once again clobber each other. So, never, 
ever have two modules potentially sending the same ID. Of course, never is a 
strong word. And, you will see that some protocols actually will break this rule to 
do address claiming — but more on that later. 
 

Payloads 
 
Recall that payloads can have between 0 and 8 bytes of data. 
Those 8 bytes can mean anything you want them to mean. The CAN 2.0B 
specification does not have an opinion about the contents of the payload. Of 
course, choosing IDs and defining payload contents can be a daunting task. If 
you own the entire bus design, you can simply choose IDs and data packing. 
However, if you need to coordinate bus usage, then a protocol needs to be 
chosen so that IDs are unique and multiple developers can interface to one 
another. Luckily for you, there are plenty of protocols to choose from like J1939, 
GMLan, SmartCraft, CANopen, etc. You can also run multiple protocols at the 
same time across the bus — just make sure the IDs do not clash and there is 
sufficient bandwidth and you are good to go. 
How much data can a CAN bus transfer? 
The maximum performance is about: 

• 2000 messages per second at 250K Baud  
(or 16000 bytes per second of payload.) 

• 4000 messages per second at 500K Baud. 
• 8000 messages per second at 1000K Baud. 

Good network design requires that you plan for no greater than 70% bus 
utilization or about 1400 messages per second at 250K. Protocols will often 
require you to pace messages at a minimum interval between messages so that 
the instantaneous message rate adheres to these limits. For instance, J1939 
paces messages at 50 milliseconds for large data transfers. In other words, they 
are limiting a block transfer to about 1% (1/0.05/2000) of the available bandwidth.  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 45 

Protocols 
 
Protocols are where CAN gets thorny.  
Because CAN has a limited number of ID bits and only 8 bytes of payload, 
defining ways to transport all types of data can be difficult. Often times we hear 
questions like, “Do you support CAN?” The answer is, of course, yes. What they 
are probably asking is, “Do you support [something like] J1939 running across 
CAN?” The answer is maybe. 
We usually consider protocols to be application specific. That is, the 
application is responsible for implementing the protocol. MotoHawk, Control 
Core, and the module hardware provide all the necessary infrastructure to 
implement protocols, but it is rare for protocols to be implemented in these 
layers. The exception to this is the reprogramming protocol for the module via 
CAN. The boot loader needs to communicate with MotoTune to reprogram a 
module. Since the application is not running during reprogramming, the boot 
loader then becomes responsible for the reprogramming protocol. 
 

Protocol Specifications 
Most protocol specifications will define Message Definitions which include: 

• ID (including whether it is extended or standard) 

• Description of any of the meaning of any ID bits 

• Description of any ID bits that are “don’t care,” commonly called the 
mask 

• Frequency of the message, or the event that will cause it to transmit 

• Device responsible for transmitting the message 

• Expected number of bytes in the payload 

• Contents of the payload 

• Size of each content item in bits 

• Location of each content item in the payload 

• Data type of each of the content items 

• Byte packing order of each of the content items 

• Translation of each content item into “real world” units 

• If the protocol has states, then a list of all states and transitions 
Unfortunately, 95% of all protocol specifications are incomplete because they 
assume certain facts (like byte order) without specifying them. The missing 
information is often the reason that you cannot connect your application to an 
existing CAN network without problems. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

46 Woodward 

Examples of Protocols 
• J1939. Recommended practice for a serial control and communications 

vehicle network. 
This is the network found on many heavy duty trucks. Communication is 
defined for a very large number of devices like engines, transmissions, 
dashes, anti-lock brakes, etc. 

• NMEA2000. This is the protocol published for marine vessels. The 
protocol is similar to J1939. 

• SmartCraft. This is the drive-by-wire protocol on Mercury Marine 
powered vessels. 

• GMLan. This is the protocol running in your favorite Chevy. 

• CCP. This is the CAN calibration protocol used by many controllers for 
calibration and service tool interaction. 

 

MotoHawk CAN Theory of Operation 
 
MotoHawk provides several blocks to make interfacing to any CAN bus and 
protocol relatively easy. 
 
 
Transmitting Messages 
 
When transmitting, all messages are transmitted via a single hardware buffer 
(usually buffer 0) from a software queue. As the application executes, each 
message that is to be transmitted is loaded into the software queue. The OS then 
monitors the buffer and transmits messages from the queue as quickly as 
possible. (Remember at 250K baud, it takes about 500 ns per message to 
transmit if the bus is not otherwise busy.) 
 
Two different forms of transmit blocks are available. 
One will transmit a raw message — meaning a message with the ID and payload 
computed by another part of the application. The other block will form the 
message from individual signals being fed to the block and a message 
specification. The latter block is generally used for broadcast, fixed content 
messages. The former is generally used to handle protocols in which the payload 
changes based on the state of the protocol. 
 
 
Receiving Messages 
 
The receiving of messages is conceptually simple, but terribly complex because 
the CAN hardware does not provide much assistance. MotoHawk has abstracted 
much of the complexity away by automatically generating a sophisticated 
software message dispatcher. As you create message receive blocks, each block 
will require a message ID and a message ID Mask that describe the message ID 
that you want to receive. The ID mask is simply a description of which bits of the 
ID must match in order for the message to be accepted. 
 
For instance, if the Message ID is set to 0x7ff and the ID Mask is set to 0x7f0, 
then all messages from 0x7f0, 0x7f1, through 0x7ff will be received by this block. 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 47 

At code generation time, the entire model is surveyed for all of the various IDs 
and masks and a software dispatcher is generated to handle this combination. 
The dispatcher will adjust the hardware to filter as many messages as possible 
from the bus and then filter the rest in software so that only the desired 
messages are passed up to the application. 
 
Each CAN receive block can optionally provide a slot name that allows other 
blocks to access and adjust the defined slot. 
 
Receive Block Slots are Like Post Offices  

The way to think about this mechanism is like a post office. Your slot is where 
you expect to get mail (or messages) destined for you. 
 
The mail sorter (or the software dispatcher) grabs all of the mail and sorts it into 
various slots. Sometimes you may want to adjust the rules for your slot; maybe 
you are going on vacation, so that the mailman changes what shows up in your 
slot. 
 
For MotoHawk CAN receive blocks, you can create a slot by name that can be 
adjusted elsewhere in your application. In the previous example, we decided at 
design time that we needed to receive all messages between 0x7f0 and 0x7ff. 
But perhaps at run time some logic decides that you really only need to receive 
0x7F1, because the module now knows what engine it is installed on. 
 
There is a slot properties block that allows you to adjust the slot to tighten the 
ID mask — so only message 0x7F1 shows up at the receive block. 
 
In other words, the mailman will deliver all of the mail that you requested when 
the code was built. But you have the ability to ask him to throw away some of the 
messages prior to placing them in your slot. 
 
There is also a slot trigger block that can be used to notify that a slot has 
received a message via a function call trigger. In other words, the mailman will 
ring your doorbell when he puts mail in your slot. 
 
Just to make matters more interesting, you may want to censor some of your 
mail so that only messages with certain contents are placed in your slot. Each of 
the CAN receive blocks has the ability to filter based on the payload contents via 
a payload value and a payload mask set of values. Like the ID, the payload 
mask simply indicates which bits of the received payload must match the given 
payload value. 
 
For instance, say that you want to receive messages 0x7f1 whenever the first 
byte of its payload is exactly 0x8f and when the last bit of the payload is set. The 
payload value would be set to [0x8f 0x00 0x00 0x00 0x00 0x00 0x00 0x01] and 
the payload mask would be set to [0xff 0x00 0x00 0x00 0x000x00 0x00 0x01.] In 
other words, the first byte must match all 8 bits and the last bit must be set in 
order for this message to be put into this particular slot.  
 
So now, the mailman reads our mail for us and obeys our content requirements 
before shoving the mail into the slot. As with IDs, the payload requirements can 
be adjusted at run time via the slot properties block. 
 
Like the transmit blocks, there are two flavors of receive blocks, one for raw 
messages and one that will unpack the payload and the ID into their respective 
data fields, providing them as signals to the rest of the application. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

48 Woodward 

Using CANKing to Observe the Bus 
 
Your MotoHawk kit included an interface for your PC that allows the PC to 
communicate to two CAN ports via the USB interface. These devices are made 
by Kvaser (www.kvaser.com.) 
 
Kvaser publishes a free CAN tool called CANKing that will allow you to observe 
the bus and even send messages. Download this tool from the MotoHawk web 
site (www.motohawk.info.) You will need this tool routinely. 
 
Initially running CANKing, you will get dire warnings about safety the first time 
you run the program. Acknowledge their warning and check the box to prevent 
the warning in the future. 
 
CANKing will launch with the following window. 
 

    
 

1. Choose “Template” to start a new project. 
2. Choose “CAN Kingdom Basic” from the templates dialog. 

You will then have several windows scattered about your desktop.First, 
look at the “CAN Controller” window.  

3. Choose the “Bus Parameters” tab. Choose the channel that you want 
(Channel 0 is the typical choice for the MotoHawk kits.) Set the Bus 
speed to 250 Kbits/s. 

 
 

 

Uncheck the Exclusive box or MotoTune will not be able to 
communicate to the module while CANKing is running. 
Unfortunately, this setting is not saved in the CANKing project file 
so you will need to browse to this window and uncheck the 
Exclusive box each time you run the program — even if you 
reopen a saved project rather than start again from a Template. 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 49 

4. Switch to the “Bus Statistics” Tab and press the “Go On Bus”button. 

 
If there is traffic on the bus, the “Bus Load” bar will give you an idea of 
how much bandwidth is being consumed. If the “Error Passive” indicator 
illuminates, there are 3 possible reasons: 

• No bus terminator 
• Incorrect BAUD rate 
• No other modules on the bus (because the modules are not 

operating or there is a wiring problem). 
Just because there is a green light for “On Bus” does not mean that the 
bus is actually connected properly. An “Error Passive” will not occur until 
a message is sent from CANKing which cannot reach a receiver, or a 
bad message is received. If nothing is received and nothing is sent, then 
CANKing stays in the “On Bus” state, which can be confusing. 

5. Open the Messages menu and select the Universal page to get a 
window that will allow you to test transmission of messages. 

6. Transmit anything and you will either see the state “Error Passive” or the 
message will appear in the “Output Window.” 

7. To display the messages in a useful form, find the “Select Formatters” 
window, select the “Standard Text Format” in the “Active Formatters in 
Order of Execution” list, and press the “Options” button. 

 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

50 Woodward 

The window “Text Formatter Options” will appear. 
 
 

 
8. Choose the setting shown. 

These settings will cause the data to be displayed as shown. 
 

 
 
A handy option in the “Output Window” is available via the right-click 
mouse button. This will fix the positions of the messages into lines of the 
display rather than showing the bus trace. 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 51 

Basic CAN Blocks 
 
MotoHawk provides a number of different CAN blocks that you will need to use 
for different circumstances. The most important block is the CAN definition 
block that will set up a channel’s BAUD rate, configure the transmit queue size, 
and allow the installation of the MotoTune protocol. This block must exist in order 
for any CAN transmission or reception to take place. 
 
The next two basic blocks are the “CAN Send Raw” and the “CAN Receive Raw” 
blocks. These blocks simply transmit or receive messages without any payload 
manipulation. 
 

 
 

CAN Channel Definition 
 
This block can exist anywhere in your model. You will need one for each CAN 
channel. 

• Bit Timing sets the bus speed or baud rate. 
• Transmit Queue Size defines the size of the transmit queue. 

 
 
MotoTune can be automatically installed along with defining the City ID and 
calibration details for the City ID. 
  

NOTE:  If you set your 
Resource to None, you will 
not be able to communicate 
with your module and will 
need to use a boot key or 
boot harness to recover the 
module. 
 
If you are changing the Target 
in the Target Definition Block, 
you may need to redefine the 
CAN resource. 



MotoHawk Resource Guide Manual 36333A 
 

 

 

52 Woodward 

The City ID is a MotoTune protocol value that essentially identifies the device. 
City ID 11 (0x0b) is the default for all of our modules. City ID 2 (0x02) is the ID for 
MotoTune. If you monitor the CAN bus while MotoTune is active, you will see 
extended message IDSs like 0x00000b02 and 0x0000020b. The MotoTune 
Protocol uses a scheme where messages are transmitted with IDs of the form 
0x0000DDSS where DD is the Destination City ID and SS is the Source City ID. 
You can simultaneously connect MotoTune to several modules. Each module 
must have a different City ID. 
 
 

CAN Transmit Raw 
 
This block can have multiple instances within your model. The bus that you want 
to transmit on and the interval of transmission are defined. The inputs to the 
block are the ID and its type, the length of the data to send and the data itself. 
 

 
 
Data (0-8 bytes uint8): This block is designed to take a vector on the Data port of 
any size of up to 8 bytes. If you feed the port with a vector of only 3 bytes, but set 
the Length port to be 8, then the block will pad the extra bytes with the value 0. 
 

 
 
Periodic Interval [ms]: If this value is set to -1, then the message will be sent 
every time this block is executed. If the value is set to a positive value, then the 
block will attempt to transmit the message at the requested rate. However, this 
check is only done whenever the block is executed. So, if the block is running at 
5 ms and the Periodic Interval is set to 12 ms, you will see the message on the 
bus at a 15 ms period. 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 53 

CAN Receive Raw 
 
This block can have multiple instances in a model. If the slot name is defined, it 
must be unique. 
 
The parameters define the CAN bus, message ID, ID mask, Payload and 
Payload Mask, along with the receive queue size and the slot name. A data 
available port (1 whenever 
the queue has any 
messages) and an Age 
Count port (increments 
whenever a message is not 
available and resets when a 
message is available) are 
also present. 
 
 
 
 
 
Masks 
Masks define which bits must 
match. A bit value of 1 within a 
mask means that the 
corresponding bit in the ID or 
payload must match the incoming 
message to be received by this 
block. A bit value of 0 in a mask 
positions means that you do not 
care what value is in that position. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

54 Woodward 

Slot Properties 
 
This block can have multiple instances in a model.  

 

 

 

 

The slot name is used to match to the slot 
defined in the receive block. The choice of 
adjusting ether the ID filter or the Payload 
filter is set here. 

Remember that slots can only be 
tightened, so only mask bits that were 
0 in the corresponding receive block 
can now be set to 1.  

Usually, this block is placed in a triggered 
subsystem, so that the slot properties are 
adjusted only on some conditions — such 
as at startup or on change of some state. 

 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 55 

Slot Receive Trigger 
 
This block provides a function call trigger whenever the specified slot receives a 
message. This trigger is high priority and will interrupt any other executing 
periodic task. 

           

            

Example of Basic CAN Blocks  
 

 
1. Start with motohawk_project Can1. 
2. Remove the existing contents of the Foreground subsystem. 
3. Create the model as shown using the Can Send/Receive Raw blocks 

and Probes/Calibrations as block input and output.— Build the model. 

Set CAN resource to CAN1 



MotoHawk Resource Guide Manual 36333A 
 

 

 

56 Woodward 

4. Note:  If you leave the resource set to “none” in the CAN Definition Block, 
you will not be able to communicate with the module and will need to 
recover module with a boot-key. 

5. Run MotoTune, program the module, and open a display. 
6. Run CANKing. 
7. Right-click on the CANKing output window and select “Fixed Positions”. 
8. In your MotoTune display — change the formatting of RX_slotID, 

RX_slotIDmask, RX_ID, and TX_ID to display hex. 
Notice in CANKing that the message 0x6ff is being transmitted every 
20 ms. 

 
 

9. In CanKing, transmit a message on address $7f0 with any data. 
 

 
 
You should see the data in your MotoTune display and the Rx_Age value should reset 
and start counting from 0. 
Adjust the slot ID and mask as well as the payload values to see how the messages are 
affected. 
In CANKing, a 
value starting with 
$, like $7F0, means 
that the value is in 
hexadecimal rather 
than decimal. 
Ending the ID value 
with an x, like 
$7f0x, would mean 
make the ID 
extended rather 
than standard. 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 57 

10. The individual bytes of the payload may also be set using the $ notation 
for hexadecimal. 

11. DLC is the number of bytes to transmit in the payload. 
 

Advanced CAN Blocks 
 

Payload Bit Numbering 
Critical to the definition of messages is the location of the least significant bit 
within the possible payload positions. 
MotoHawk defines the bit numbering as shown below. This bit numbering is 
different than most protocol specifications. 

 

 
 

You ALWAYS specify the location using the LSB of the field, regardless of the 
byte packing order. 
You do NOT necessarily use the bit furthest to the right, which would be the 
positions. MotoHawk defines the bit numbering as shown to the right. This bit 
numbering is different than most protocol specifications. 

 
Standard ID Bit Numbering 
Like payloads, IDs can be packed or unpacked. For standard IDs, the bit number 
is defined as shown below. 

 

 
 

Extended ID Bit Numbering 
For extended IDs, the bit numbering is defined as shown below. 

 

 

 
The payloads contained within CAN messages often need to be packed or 
unpacked into their constituents for use by the rest of the model. MotoHawk 
provides a transmit and a receive block that incorporates the packing and 
unpacking of data elements into the messages. Additionally for transmission of 
messages, the block can pack multiple messages simultaneously and place them 
onto the bus at a specified period for the message group, as well as an inter-
message pacing interval to conserve bus bandwidth. 
 
Each of these blocks requires a message definition in order to properly pack 
or unpack the data. The message definition is nothing more than a MATLAB 
structure containing specific fields which we will cover below. In addition to 
unpacking the payload, it is also possible to unpack the ID fields. This becomes 
important for protocols, like J1939, where the bottom byte of the ID is the source 
address of the module transmitting the message. As with the Can Read Raw 
block, all of the ID mask and payload mask details still apply. 
For transmitting CAN messages — setting the payload mask will cause the bits 
that are set to precisely have the value set in the payload value, regardless of the 



MotoHawk Resource Guide Manual 36333A 
 

 

 

58 Woodward 

value of any fields that might be defined on those bits. This allows you to set fixed 
elements of the payload to a value without needing to define fields for those values. 
An m-file, motohawk_can_example, is provided with MotoHawk that defines 
a proper Matlab structure for defining a MotoHawk CAN message. We 
recommend copying this file and creating new CAN message definitions 
using the supplied structure as a template. 
 

Message Definition Structure 
 
Motohawk_can_example.m contains the details of the structure format needed to 
define a message. 
 

.name name displayed on block (default: empty string):  

.description brief text used to document 
message (default: empty string) 

.protocol name of the protocol used (default: empty string) 
.module name of the source module (default: empty string) 
.channel number of the source CAN channel (default: 1) 

CAN ID Setup 
.id may be either 11 or 29 bits (if undefined, uses .idinherit = 1) 

.idext either ‘STANDARD’ (11-bit) or ‘EXTENDED’ (29-bit) (if 
undefined, uses .idinherit = 1) 

.idmask indicates which bits are relevant for a receive slot (default: 
0xffffffff) 

.idinherit 
Default 0.  When set to 1, causes the message to use the ID of 
the previous message in a list of messages (only applies for 
transmit messages) 

.idcontent{} 
bit fields within message ID, as described below. (optional). 
Describes individual fields within the ID. May be undefined or 
empty, if no ID content is defined. 

Transmit Interval, Message Size, and Contents 
.interval period in milliseconds, or -1 if sent asynchronously (default: -1) 

.payload_size 
payload size may be from 0 to 8 bytes. (default: 8) 
Transmit: exact number of bytes to send. 
Receive: minimum number of bytes required. 

payload_value 

Just as an ID has a value and mask, so can the (optional) 
payload. For receives, this will result in a software filter requiring 
the bits set in the payload mask to be equal to those in the 
payload value. For transmits, any bits set in the payload mask 
will be hard-coded to be the corresponding bits of the payload 
value, regardless of any payload fields that may overlap it. A 
typical use of this feature is to identify a specific message by the 
first byte of the payload. May be a vector of bytes or a hex string. 

.payload_mask 

Indicates which bits of the payload are relevant for a receive slot, 
or which bits will be hardcoded for transmits. If the number of 
bytes is less than the size of the payload, the unset bytes are 
assumed to be 0, meaning do not care.  
May be a vector of bytes or a hex string.    

.fields{} 
Fields within message payload, as described below. (optional). 
Describes individual fields within the payload. May be undefined 
or empty if no payload fields are defined. 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 59 

Structs in the .idcontent{} and .fields{} cell arrays may contain the following fields: 
 
 

.name name displayed on the block  (default: empty string):  

.units units (of Simulink-model value) used 
in mask display  (default: empty string) 

.start_bit indicates the least-significant bit of the field regardless of endian-
ness (required) 

.bit_length number of bits in the field may spill across bytes (required) 

.byte_order 
may be ‘BIG_ENDIAN’ or ‘LITTLE_ENDIAN’. (default: 
‘BIG_ENDIAN’) (only ‘BIG_ENDIAN’ is valid for .idcontent{} 
fields) 

.data_type may be ‘UNSIGNED’, ‘SIGNED’, ‘FLOAT32’, or ‘FLOAT64’ 
(default: ‘UNSIGNED’) 

.scale 

scale factor. Since the same message description (default: 1.0) 
struct is used for both transmits and receives, the scale factor 
should not be thought of as a gain. Instead, think of it as the 
units of the signal in the payload on the CAN communication 
wire such as 1/100 of a degree for a signed integer representing 
degrees Kelvin where 1245 (in the payload on the CAN 
communication wire) represents 12.45 degK (in Simulink model 
units). See equation below. 

.offset 

offset applied to the field in engineering units. (default: 0.0).  
This is sometimes used to represent high-resolution values in a 
range far from zero. To represent Simulink-model values from 
230 to 270 Kelvin, a range of +/ - 20.47 degC with 0.01 degC 
resolution is available using a signed 12-bit value in the payload 
on the CAN communication wire with an offset of 250 Kelvin. 
See equation and example below. 

 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

60 Woodward 

Advanced Example 
1. Create a new model using motohawk_project(‘can2’) 
2. Remove the existing contents of the Foreground subsystem 
3. Create the model as shown using the default MotoHawk_CAN_example, 

CAN Send/CAN Read blocks with Probes and/or Calibrations on CAN 
block input/output. Build the model. 

4. Run MotoTune, program the module, and open a display. 
5. Run CANKing. 

 

 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 61 

Expanded Image of Send CAN Message from Above: 

 

 

Expanded Image of Read CAN Message: 

 

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

62 Woodward 

 
6. Note the 1F3 message being transmitted. The 3 comes from the Node ID input.  

 
 
 
 
 
 
 
 
 
 
 
 
 

7. Transmit a message from CANKing and verify that the value is received by 
the module as shown by the probe values in MotoTune. 

 

                                                      
 
 
 

 
 
 
 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 63 

Chapter 4. 
Memory Management 

 
 

Introduction 
 
MotoHawk is designed to be an integrated rapid prototyping control system 
solution out of the box. However, once a system starts growing into a larger 
control system, memory management becomes increasingly more important. 
 
In this section, we will discuss the basic memory layout of Woodward’s  control 
modules and discuss in detail the blocks that have the most impact on memory 
usage and performance. Memory management of your MotoHawk control system 
requires the understanding of vardecs (Variable Declarations). 
 
There are three types of variables available in MotoHawk; Constant (Const,) 
Non-Volatile, and Volatile Data. 
 
Constant: is just that, constant, never changing data. 
 
Non-Volatile data: can be changed and is saved between power cycles. Non-
Volatile data is predictable during and between power cycles because it will 
always retain its last known value. 
 
Volatile data: can be changed, but is not saved. After a power cycle it will return 
to its original default value. 
 
 
Knowing your memory 
 
Woodward control modules include three types of storage devices. 
 
Flash is read only memory and retains its information between key cycles. 
Control Core, the MotoHawk application, and constant data are stored in the 
flash region of the module. 
 
EEPROM (Electrically Erasable Programmable Read Only Memory) is 
similar to flash, in that it will retain its information across key cycles. 
However, EEPROM can be erased and written to. This section of the module 
becomes the most important when saving calibration changes and is responsible 
for saving and recalling the non-volatile data in a model. Read and write to the 
EEPROM as your control algorithm changes. We will discuss later when the 
EEPROM is written to and how to ensure that you safe guard your data. 
 
There are two different types of EEPROM, serial and parallel. Parallel EEPROM 
is only available on a development module. This memory is what allows the user 
to change non-volatile display and calibration variables in real-time during testing 
and validation. 
 
RAM (Random Access Memory) is only temporary memory space used for 
volatile data. 
The contents of RAM are erased between key cycles. Any changes made in 
RAM will be lost once the module has been turned off. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

64 Woodward 

Flash is used to write information that cannot be accidentally overwritten. This is 
why the program is stored in flash. If the program was stored in EEPROM, one 
wrong memory write and you may have overwritten a vital part of the control 
system. 
 
 
Why so much different memory? 
 
EEPROM is the work horse for memory management of your control system and 
offers the best of both worlds. It is capable of storing information, but is also 
capable of erasing and writing new information. 
 
There is one drawback to EEPROM — any given memory location can only be 
written to at most 100k times. So if you were saving a variable every 5ms, it 
would not take long to reach the 100k cycle and possibly burn out that location of 
the EEPROM. 
 
To avoid this problem, the contents of the EEPROM are “shadowed” into RAM 
when the module is turned on. Changing a variable that will be saved across a 
key cycle is actually changed in the RAM copy and shadowed back in the 
EEPROM at shutdown. Later you will learn how to save the Nonvolatile data 
based on your own criteria. 
 
Knowing the hardware 
 
Woodward control modules come in two different versions. 
 
The development version has an added parallel EEPROM region where 
vardecs are stored. 
 
This extra memory region allows the user to view and change calibration and 
display variables using MotoTune and is typically used for testing and calibration. 
 
A production module contains only the serial EEPROM.  
 
No real-time calibrations can be performed with this module without explicitly 
assigning the variable to be stored in the non-volatile region, which we will 
discuss in the next section. In this way, the cost of production modules is kept 
down relative to their development counterparts. 
 
Familiarize yourself with the interface             

MotoHawk has three basic blocks that allow viewable variables to appear in 
MotoTune: calibrations, probes, and overrides. Before we discuss each individual 
block in-depth, let’s look at the similarities you may find when looking at their 
masks. 

Mask parameters are accessed by double clicking on the block. 

 

 

 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 65 

We will use a calibration block to illustrate the parameters. Drag a calibration 
block into your model and double click on the block and a separate window will 
appear listing that block’s mask parameters. Anything said about this block’s 
mask parameters can be applied to any block with similar fields. 
 

Calibrations 
 
Calibrations can be described as a MotoTune accessible Simulink constant block. 
 
Unlike Simulink constant blocks, the 
MotoHawk Calibration block can only be 
used once per declared vardec in the 
model. However, because a Calibration is 
composed of a Data Storage block, you can 
use a Data_Read block to access it in other 
parts of the model. 
 
Be careful – it is easy to drop calibrations all 
over the model, but if you allow them all to 
be doubled, you may be wasting memory. 
 

Probes 
 
Probes are read-only displays stored in RAM. A MotoHawk probe is similar to 
Simulink’s native display block and scope block. Probes can be very helpful 
when testing and debugging, but if used carelessly, they can use more RAM than 
necessary. 
 
Probes will require extra memory when the wire it is placed on is not already being 
kept around between execution cycles in the system, so if the control system 
design requires the value of a particular wire to retain its value between cycles, 
the value will be allocated memory space.  Probing such a wire will not add any 
further memory because the optimizer recognizes the two values to be the same 
and they both reference the same memory location. However, if the signal is not 
kept by the control system, then adding a probe will require more memory. 
 

 
 

Overrides 
 
Overrides are inline calibrations and have both an input and an output. There are 
two different types of override blocks. Both blocks create two vardecs that can be 
manipulated within the display window of MotoTune. 
 
The override relative block is a way to lock the output and apply an offset.   It was 
designed around some legacy software and is typically not a block that a control 
system will use. 
 
The override absolute enables the MotoTune user to ignore the input and use a 
specified value.  
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

66 Woodward 

Block Parameters 
 

Name: This field can be any MATLAB expression (such as those in the 
Motohawk_can_example.m file above) or a string, so that it can be called from 
other MATLAB functions. If a string is used, make sure to enclose the string in 
single quotes. 

What are valid MATLAB expressions? 
MATLAB expressions can be workspace variables or MATLAB functions that 
return a number. Commonly, an m-script is made with calibration values stored 
by name. This m-script is called and all the calibrations are loaded in the 
workspace and the default values reference those values. 
 

Default Value: This is the value that takes effect from the first time of 
programming. It remains in effect until it is changed using MotoTune. 

Behavior: This is where you decided what type of memory this variable will be 
stored in. 

• Calibration 
o Flash (prod) 
o Parallel EEPROM (dev) 

• Display – RAM 
• Calibration NV – Serial EEPROM 
• Display NV – Serial EEPROM 

 

 
  

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 67 

Show Additional Parameters: Click the check box to show a list of additional 
parameters to modify for this block. 
 
Name Source: “Use Parameter” is the 
default for this field, which requires the 
name field above to be entered. Other 
choices include “Use Output Wire 
Name”, or “Use Input Wire Name”. This 
will gray out the “Name” field and 
reference the wire name attached to the 
block. 
 
For a calibration, if you select “Use 
Output Wire Name”, then double click on 
the wire attached to the output and 
provide a name for the wire, update the 
model, then the calibration block will 
take the name provided for the wire. 

 
 
Output Data Type: By default, MATLAB 
makes all data types double. By not 
making a selection or specifying it in the 
“Default Value” field, then the output will 
default to double. Otherwise, you have 
two ways of specifying the data type. 
You can leave this field to “Inherit” from 
“Default Value” and enter the data type 
along with the “Default Value” field. (For 
instance, unit 16(0)). This indicates that the default value will be a 16 bit unsigned integer 
with the value of zero, or you can use the pull down selection of this field to explicitly 
identify the output data type, such as uint16. You can then leave the default value to be 
just the number zero.  
 
Access Levels: Access levels handle the security of the control system and relate to the 
access level of the MotoTune security dongle, as well as the port access level specified on 
the PC connecting to the control module. Access Levels range from a value of 1 thru 4. By 
default, all the blocks that have access levels are set to “1.” Anyone with a MotoTune 
security dongle with access level 1 or above may view and/or change this vardec. 
 
Since 1 is the lowest access level, everyone has access to this vardec. However, if the 
access level was set to a 2, and your MotoTune security dongle only had access level 1, 
you would not have permission to view or change this vardec. 
 
By default all MotoHawk kit dongles have access level number 4. Since level 4 is the 
highest, those dongles have access to everything within the control system. Lower level 
dongles are available from Woodward. 
 
  

 



MotoHawk Resource Guide Manual 36333A 
 

 

 

68 Woodward 

Show Additional Parameters (cont’d) 
 
Use uploaded calibrations values from MotoTune: 
 
This selection indicates if you want the source of this variable to be a separate 
MATLAB file or if it may come from a different source. 
 
The MotoHawk upload calibration feature will make 
a MATLAB m-script for every defined vardec, but if 
a vardec is generated from a separate piece of 
software, you want your model to ignore the value 
located in the m-script file.  For example, if you 
were constructing an autonomous vehicle that 
included GPS coordinates and the coordinates are 
generated from a mapping program, you would 
deselect this option. 
 
View Value As: MotoTune has been designed to 
show data one of three different ways: number, 
enumeration, or text.  
 
If enumeration is selected, then the Enumeration 
field may be used to specify the text associated 
with the enumeration. What you see in MotoTune 
will be the text in the Enumeration field (On/Off, 
Start/Run/ Stop, etc.) instead of a number. Be 
careful to make sure the enumeration text and 
numbers align properly. 
 
Enumeration (Cell String, or Struct): 
Enumeration associated with the input when the 
“View Value As” field is selected to Enumeration. 
 
Show MotoTune Help and Units: Select to show 
help text and units. 
 
  

 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 69 

Show Additional Parameters (cont’d) 
 

Help Text and Units: 
 
Help Text: Text to aid the 
MotoTune users what this vardec 
does and what it might effect if 
changed. 
 
The text shows up automatically 
with calibrations. The help text 
and units automatically display 
with calibration values. 
 
For displays, right click on a 
variable and select its properties 
to view the associated 
information including the help 
text for that variable. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Notice the help text and unit information that is displayed next to the calibration. If 
the vardec is specified as a display, you must right click on the value and go to 
Properties/More to view its help and unit information. 
 

 
  

 

 



MotoHawk Resource Guide Manual 36333A 
 

 

 

70 Woodward 

Units: Indicates to the MotoTune users what units this vardec is specified in for 
clarification during testing and calibration. 
 
Show Min and Max Values: Select to show min and max values. 
 
Minimum Value and Maximum Value: Minimum or Maximum Value for this 
vardec. This will clamp the signal in MotoTune. 
 
If an attempt is made to go below (above) this value, then MotoTune will display a 
clamp value message and will force the value to this minimum (maximum) value. 
 
This is useful to ensure a calibration is not accidently changed outside of a 
specified range. This min and max takes into consideration any gain, offset, or 
exponent that was applied to the value. 
 
By default the minimum value is –infinity (-inf) to prevent MotoTune from clamping 
the value if it is changed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Show MotoTune Precision, Gain/Offset/Exponent: Select to show MotoTune 
Precision information. The Precision, Gain, Offset, and exponent information is for 
MotoTune use only. 
 
This is not to be used to convert analog/digital counts (ADC) to engineering units. 
These values are typically used to allow the designer of the system to use proper 
system units, but display the value in more convenient units in MotoTune (ie. 
English units, SI units).  

 
 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 71 

Show Additional Parameters  
 
Show MotoTune Precision, Gain/Offset/Exponent (cont’d.): 
 
Precision: Sets the default precision for the variable. The format is: 
‘width.decimal’.  
 
For instance, if you wanted the entire width of the variable to display 6 digits with 
4 decimal places of precision, you would enter ‘6.4’. The width takes precedence, 
so if your variable is six digits, there will be one decimal place applied. However, 
if your variable becomes a seven digit number, then the precision would expand. 
 
Gain, Offset, Exponent : These values only apply to how the variable will be 
displayed in MotoTune. 
 
These values are not to be used to apply a gain, offset, or exponent for ADC to 
Engineering Unit conversion. 
 
The equation is as follows : 
 
MotoTuneValue = (value * gain)exponent + offset  
 
This determines how MotoTune will organize the data within its messages and 
how it will be displayed. So, if MotoTune were to display a value in 1000’s of 
RPM, a 1 would appear in the cell in your display window for a value of 
1000RPM. 
 
Show MotoTune Group: Select this to specify the MotoTune group. This entry 
allows customizing of the group structure in MotoTune. 
 
Just like the Name field, this value can be an expression, which means it can be 
a function call, just as the default value is. The default value 
“motohawk_vardec_path(gcb)” returns the path structure of your model. 
 
By default this value runs a function called motohawk_vardec_path(gcb,) thus the 
location of each vardec will be the same as the model. 
  
For instance, if you have a calibration in a model just under the foreground task 
in a model named example, then by default the calibration will be located under 
example/foreground/ calibration in MotoTune. 
 
To specify your own directory structure, use the vertical bar (pipe) to separate the 
paths. So, to put the calibration in a folder called calibrations under controller, 
you would type: ‘controller | calibrations’ in the MotoTune group field. Remember 
the single quotes. MotoTune’s directory structure consists of folders, pages, and 
values. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

72 Woodward 

Data Storage Blocks 
 
The MotoHawk Data Definition Block 

 
The MotoHawk Data Definition Block defines data to be accessed via a 
MotoHawk Data Read or Write block.    
 
The 'Data Name' provides a globally unique name, accessible from anywhere in 
the model. It is illegal to have duplicate names. 
 
The data defined in the Data Definition block is accessed in the Read and Write 
blocks by the Data Name 
 
The initial value can be either a single value, a vector, or a matrix.   For example, 
setting the initial value to [1,2,3,4,5] defines a 5 element vector of data.  Matlab 
expressions ( ex. zeros(1,50) ) can also be used to define the initial value. 
 
'Storage Class' identifies the behavior of the data on the target. Volatile data will 
return to its 'Initial Value' on every startup. NonVolatile data will be saved in 
EEPROM, and return to the last written value on startup. 
 
Checking 'Attach a VarDec for visibility in MotoTune' will show similar parameters 
as the Calibration block. If unchecked, the variable will not be available from 
MotoTune. 
 

 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 73 

Global Data Read and Write Blocks 
 

 
 
 
MotoHawk Data Read Block 
 
The MotoHawk Data Read Block reads a value from data defined by a 
MotoHawk Data Definition block. 
 
The 'Data Source' may be resolved by name, or by explicitly providing a dynamic 
reference signal.  
 
The Data Structure defines whether the input is a scalor, vector, or matrix as 
defined in the Data Definition Block. 
 
The data type must match the Data Type selected in the Data Definition block 
 
The Data Name field appears if the Data Source is defined to be ‘Lookup By 
Name’. In this case, the name is set to match the Name field defined in the 
corresponding Data Definition Block 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If Vector or Matrix is selected, the array can be read or written all at once, or by 
specified index. 
 
The indexing is zero based (indices range from 
0 to size-1). 
 
The selection for 'Data Structure' and 'Data 
Type' must match the definition. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

74 Woodward 

MotoHawk Data Write 
The MotoHawk Data Write block writes a value to data defined by a MotoHawk 
Data Definition block.  The fields are similar to the Data Read Block. 
 
The 'Data Source' may be resolved by name, or by explicitly providing a dynamic 
reference signal.  
 
The Data Structure defines whether the input is a scalor, vector, or matrix as 
defined in the Data Definition Block. 
 
The data type must match the Data Type selected in the Data Definition block. 
 
The Data Name field appears if the Data Source is defined to be ‘Lookup By 
Name.’ In this case, the name is set to match the Name field defined in the 
corresponding Data Definition Block 
 
 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 75 

MotoHawk Lookup Tables 
 

 
 
The lookup table block performs 1-D or 2-D linear interpolation of input values 
using the Breakpoint and Table Data. The table data will saturate at the 
endpoints for inputs above or below the breakpoint data range. 
 
The Name field is the Vardec used in MotoTune. The output is normally assigned 
to be a display variable with this name. 
 
Output Name is an optional name for the output of the table. If left blank, a 
VarDec will be generated called Name. If non-empty, a downstream probe must 
be provided called output name, which allows customization of the output VarDec 
from MotoTune. An error will result if the VarDec does not exist. 
 
The ‘Show Additional Parameters’ option can be checked to allow entry of 
read/write access levels, to Enable/Disable to use or ignore uploaded values 
from MotoTune, as well as set Breakpoint/Table Data maximum and minimum 
values, and show MotoTune units and help. 
 
See block help for additional details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

76 Woodward 

MotoHawk 2-D Lookup Table Example 
 
Build a simple MotoHawk 2-D lookup table with the following data: 

• row breakpoint data is [1,2] 
• column breakpoint data is [3,4] 
• table data is [10,20; 30,40] 

 

 

  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 77 

MotoHawk PreLookup and Interpolation 

The MotoHawk Interpolation tables are actually constructed from two blocks, the 
MotoHawk Prelookup and MotoHawk Interpolation Blocks. This can be seen by 
right clicking on the MotoHawk Interpolation block and selecting “Look Under 
Mask.” The MotoHawk Prelookup and Interpolation tables can be used to share 
the prelookup (interpolation between two points on the axis) with multiple tables 
of data. The output of the prelookup can only be connected to the input port of 
the interpolation block. 
 
As shown below, separate interpolation tables (which are set to zeros and can be 
calibrated later in MotoTune) use the same prelookup. 
 
 

 
 
Recreate the first lookup table example, except this time with prelookup and 
Interpolation: 
 

 



MotoHawk Resource Guide Manual 36333A 
 

 

 

78 Woodward 

Chapter 5. 
Boot Key Recovery 

 
Errors in configuration, logic and/or other programming made during program 
development when programmed into a module (via .srz file), can cause a 
persistent loss of CAN communications with the module under development. If 
this happens, apply the boot key (or boot harness) to force the module into 
reboot mode, reloading the module with functional program code (a known, valid 
.srz file) in order to allow resumption of module communication. Follow the steps 
listed in this section. 
 

 

Remove the ECU from direct control connections before 
performing the reboot procedure, as outputs are set to 
defaults or undefined states, with unpredictable and 
possibly hazardous results if applied. 

 

 
Remove other ECUs from CANbus for this procedure. 

 
Refer to diagram below for connections. 
 

 
 
Use Boot Key and Reprogram the Module 
 

1. Connect the module for programming via necessary cables, CAN 
converter, etc. 

2. Select a known, valid .srz file for programming.  
3. With key off, disconnect battery power from module. 
4. With module power off, initiate programming of the module using 

MotoTune. 
5. When the “Looking for an ECU” prompt appears in the dialog, reconnect 

Battery, and then turn key on, to power up and “wake-up” ECU. The 
module must “wake-up” (KEYSW on) with the boot key or cable 
connections applied as described in order to initiate a reboot and to 
absorb the selected program. 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 79 

Chapter 6. 
MotoHawk Acronyms and Terms 

 
 

TERM OR 
ABBREV. MEANING NOTES 

General Terms 

CC Control Core MotoHawk's Operating System 

City-ID MotoTune's Address ID 
for communication port   

GCC   Open Source Compiler that can be used with 
MotoHawk 

GHS Greenhills Compiler Production compiler for use with MotoHawk 
supplied by Greenhills Corp. 

MCS MotoHawk Control 
Solutions 

Product Line containing Modules, MotoHawk and 
MotoTools Software, and related components 

MH MotoHawk Model Based Software Tool 

MS MotoService A scaled down version of MotoTune for 
programming and calibration in the field 

MT MotoTune A tool for programming and calibration of MCS 
modules 

NV Non-Volatile memory 
Memory that is stored across key cycles, as 
opposed to Volatile memory which is not stored 
across key cycles. 

PWM Pulse Width Modulation Square Wave Signal that varies pulse width at a 
certain frequency 

RTI Real Time Interrupt Periodic rate for application code 

RTW Real Time Workshop 
Software from the Mathworks that is used along 
with MATLAB and Simulink for embedded code 
generation 

TLC Target Language 
Compiler 

Mathwork's proprietary compiler, used by 
MotoHawk in code generation 

Vardec Variable Declaration  Term is generally used for items that can be 
viewed or calibrated in MotoTune 

File Extensions 

.dll windows dll file, created 
by build   

.mdl Extension of a MotoHawk 
Model file  

.srz 
Extension of the 
programming file created 
by the MH build 

  

  



MotoHawk Resource Guide Manual 36333A 
 

 

 

80 Woodward 

MotoHawk Acronyms and Terms (cont’d.) 
 

TERM OR 
ABBREV. MEANING NOTES 

Licensing Terms 

.acf Activation File A file that is returned from a license update 
transaction containing license activation  

dongle 
Silver USB token 
containing software 
licensing 

A silver token that a user purchases that contains 
the license for MotoHawk, MotoTune, and/or 
MotoService. The token is placed in the USB drive 
of a computer to run the software. 

.tkf Transaction File 
A file that can be sent by the customer to update 
MotoHawk license by email, rather than shipping a 
new dongle 

Some MH Related Industry Terms 

CCP CAN Communication 
Protocol 

Standard communication protocol used for 
calibration and data acquisition from electronic 
control units. Modules communicate with MotoTune 
on a Woodward proprietary protocol, but can be 
calibrated by industry standard tools such as INCA 
with CCP. 

HIL Hardware in the Loop 
testing  

ISO15765/UDS   

A standard protocol for communicating diagnostic 
information with a scan tool. MotoHawk has an 
ISO15765/UDS blockset available for purchase 
separately 

J1939   

A vehicle bus standard for CAN communication 
protocol and hardware used for communication and 
diagnostics among vehicle components. MotoHawk 
is developing a J1939 library to facilitate the 
implementation of J1939 communication protocols 

OBD On-Board Diagnostics 
A term referring to a vehicle’s self-diagnostics and 
reporting capability. This usually refer to emission 
requirements and regulations 

OBD-FM On Board Diagnostics 
Fault Manager 

A library of MotoHawk blocks that can be used by 
an application team to develop software to meet 
OBD emissions requirements. The use of the OBD-
FM blocks in itself does not make a system 
emission compliant. 

SIL Software in the Loop 
testing  

 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 81 

MotoHawk Acronyms and Terms (cont’d.) 
 

TERM OR 
ABBREV. MEANING NOTES 

Naming Method for ECUs 

ECM-0565-
128-1001C 

Engine Control Module - 
Processor Family - 
Number of Pins - Model 
Year- Version Number - 
Type 

ECM- Engine Control Module;  0565:  Refers to the 
Microprocessor; 128: Number of pins on the 
Module;  1001:  The model year and revision - so 
first module of 2010; C:  Calibratable (DEV) module 

Hardware Related Terms 

ADC Analog to Digital 
Converter 

Takes a 0-5V voltage and converts to binary to 
feed into the CPU 

AIN Analog Input 
Bedrock   The ECM-0S12-70, 70 pin module 

CAN Controller Area Network CAN 2.0B Communication Bus 
CAM CAM input Signal input from the CAM sensor 

CNK Crank input Signal input from the Crank Wheel Sensor, can be 
Vr or Hall effect 

CPU Central Processing Unit The main microprocessor unit of the module.  
DVRG Driver Ground 

DVRP Driver Power -  Provides battery power to the actuators through the 
Main Power Relay 

DEV Development Module 
Noted by a 'C' for calibratable in the part name.  
The modules have additional parallel EEPROM 
memory for on the fly calibrations 

ECM Engine Control Module   

ECM-OH Engine Control Module - 
OH 

New module being developed for the OH-6 
program 

ECU Electronic Control Unit 

ECUP ECU Power Also called Wake or Key - provides the 'wake-up' 
signal to the microcontroller  

EGO Exhaust Gas Oxygen 
sensor  

EKP, EKN Engine Knock (sensor) 
Positive/Negative   

EST Electronic Spark Timing 
Output 

Spark Output to drive a smart coil, logic level (0-
5V) output 

GCM General Control Module 
HCM Hydraulic Control Module   

HEGO Heated Exhaust Gas 
Oxygen   

HSO High Side Output 
INJ Injector Fuel Injector Output 
I/O Input/output   
 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

82 Woodward 

MotoHawk Acronyms and Terms (cont’d.) 
 

TERM OR 
ABBREV. MEANING NOTES 

Hardware Related Terms (continued) 

LECM Large Engine Control 
Module New module being developed for large engines 

LSO Low Side Output 
Connection to DVRP through a transistor - ground 
is switched for power to flow from DVRP to the 
LSO output 

MPRD Main Power Relay Driver 
Controls the Main Power Relay, MPRD block in 
MotoHawk provides for a controlled module 
shutdown 

PCM09 Powertrain Control 
Module 09 The ECM-5554-112, 112-pin module 

PCMHD Powertrain Control 
Module - Heavy Duty The 128-pin control module 

PROD Production Module 
Noted by an 'F' for flash in the part name.  The 
modules do not have the additional memory for on 
the fly calibrations. 

RTC Real Time Clock 

SCL+/SCL- Serial Communications 
Link RS232 or RS485 communication channel 

SECM-48 Small Engine Control 
Module 

The ECM-0563-048 module used in the OH-4 
system 

SPD+/SPD- Speed Input Input for measuring frequency with Vr or Hall Effect 
sensor 

STOP/ESTOP Emergency Stop - 
 when asserted signal disables the main power 
relay and may also disable engine related outputs 
such as injection and spark 

TPU Time Processing Unit 
Very fast section of the microprocessor used to 
make angle based calculation for engine position 
and high resolution outputs 

uChi   The GCM-0S12-024-0401 Module 
VARCAM Variable CAM CAM phasing 

XDRP 5V 300mA power source 
for sensors   

 
 



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 83 

Chapter 7. 
Service Options 

 
 

Product Service Options 
 
If you are experiencing problems with the installation, or unsatisfactory 
performance of a Woodward product, the following options are available: 
• Consult the troubleshooting guide in the manual. 
• Contact the manufacturer or packager of your system. 
• Contact the Woodward Full Service Distributor serving your area. 
• Contact Woodward technical assistance (see “How to Contact Woodward” 

later in this chapter) and discuss your problem. In many cases, your 
problem can be resolved over the phone. If not, you can select which course 
of action to pursue based on the available services listed in this chapter. 

 
OEM and Packager Support: Many Woodward controls and control devices are 
installed into the equipment system and programmed by an Original Equipment 
Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the 
programming is password-protected by the OEM or packager, and they are the best 
source for product service and support. Warranty service for Woodward products 
shipped with an equipment system should also be handled through the OEM or 
Packager. Please review your equipment system documentation for details. 
 
Woodward Business Partner Support: Woodward works with and supports a 
global network of independent business partners whose mission is to serve the 
users of Woodward controls, as described here: 

• A Full Service Distributor has the primary responsibility for sales, service, 
system integration solutions, technical desk support, and aftermarket 
marketing of standard Woodward products within a specific geographic area 
and market segment. 

• An Authorized Independent Service Facility (AISF) provides authorized 
service that includes repairs, repair parts, and warranty service on Woodward's 
behalf. Service (not new unit sales) is an AISF's primary mission. 

• A Recognized Engine Retrofitter (RER) is an independent company that 
does retrofits and upgrades on reciprocating gas engines and dual-fuel 
conversions, and can provide the full line of Woodward systems and 
components for the retrofits and overhauls, emission compliance upgrades, 
long term service contracts, emergency repairs, etc. 

• A Recognized Turbine Retrofitter (RTR) is an independent company that 
does both steam and gas turbine control retrofits and upgrades globally, and 
can provide the full line of Woodward systems and components for the 
retrofits and overhauls, long term service contracts, emergency repairs, etc. 

 
You can locate your nearest Woodward distributor, AISF, RER, or RTR on our 
website at: 

www.woodward.com/directory.aspx 



MotoHawk Resource Guide Manual 36333A 
 

 

 

84 Woodward 

Woodward Factory Servicing Options 
 
The following factory options for servicing Woodward products are available 
through your local Full-Service Distributor or the OEM or Packager of the 
equipment system, based on the standard Woodward Product and Service 
Warranty (5-01-1205) that is in effect at the time the product is originally shipped 
from Woodward or a service is performed: 
• Replacement/Exchange (24-hour service) 
• Flat Rate Repair 
• Flat Rate Remanufacture 
 
Replacement/Exchange: Replacement/Exchange is a premium program 
designed for the user who is in need of immediate service. It allows you to 
request and receive a like-new replacement unit in minimum time (usually within 
24 hours of the request), providing a suitable unit is available at the time of the 
request, thereby minimizing costly downtime. This is a flat-rate program and 
includes the full standard Woodward product warranty (Woodward Product and 
Service Warranty 5-01-1205). 
 
This option allows you to call your Full-Service Distributor in the event of an 
unexpected outage, or in advance of a scheduled outage, to request a 
replacement control unit. If the unit is available at the time of the call, it can 
usually be shipped out within 24 hours. You replace your field control unit with 
the like-new replacement and return the field unit to the Full-Service Distributor. 
 
Charges for the Replacement/Exchange service are based on a flat rate plus 
shipping expenses. You are invoiced the flat rate replacement/exchange charge 
plus a core charge at the time the replacement unit is shipped. If the core (field 
unit) is returned within 60 days, a credit for the core charge will be issued. 
 
Flat Rate Repair: Flat Rate Repair is available for the majority of standard 
products in the field. This program offers you repair service for your products with 
the advantage of knowing in advance what the cost will be. All repair work carries 
the standard Woodward service warranty (Woodward Product and Service 
Warranty 5-01-1205) on replaced parts and labor. 
 
Flat Rate Remanufacture: Flat Rate Remanufacture is very similar to the Flat 
Rate Repair option with the exception that the unit will be returned to you in “like-
new” condition and carry with it the full standard Woodward product warranty 
(Woodward Product and Service Warranty 5-01-1205). This option is applicable 
to mechanical products only. 
 
 

Returning Equipment for Repair 
 
If a control (or any part of an electronic control) is to be returned for repair, 
please contact your Full-Service Distributor in advance to obtain Return 
Authorization and shipping instructions. 
 
When shipping the item(s), attach a tag with the following information: 
• return authorization number; 
• name and location where the control is installed; 
• name and phone number of contact person; 
• complete Woodward part number(s) and serial number(s); 
• description of the problem; 
• instructions describing the desired type of repair. 
  



Manual 36333A MotoHawk Resource Guide 
 

 

 

Woodward 85 

Packing a Control 
 
Use the following materials when returning a complete control: 
• protective caps on any connectors; 
• antistatic protective bags on all electronic modules; 
• packing materials that will not damage the surface of the unit; 
• at least 100 mm (4 inches) of tightly packed, industry-approved packing 

material; 
• a packing carton with double walls; 
• a strong tape around the outside of the carton for increased strength. 
 

 

To prevent damage to electronic components caused by improper 
handling, read and observe the precautions in Woodward manual 
82715, Guide for Handling and Protection of Electronic Controls, 
Printed Circuit Boards, and Modules. 

 
 

Replacement Parts 
 
When ordering replacement parts for controls, include the following information: 
• the part number(s) (XXXX-XXXX) that is on the enclosure nameplate; 
• the unit serial number, which is also on the nameplate. 
 
 

Engineering Services 
 
Woodward offers various Engineering Services for our products. For these services, 
you can contact us by telephone, by email, or through the Woodward website. 
• Technical Support 
• Product Training 
• Field Service 
 
Technical Support is available from your equipment system supplier, your local Full-
Service Distributor, or from many of Woodward’s worldwide locations, depending 
upon the product and application. This service can assist you with technical 
questions or problem solving during the normal business hours of the Woodward 
location you contact. Emergency assistance is also available during non-business 
hours by phoning Woodward and stating the urgency of your problem. 
 
Product Training is available as standard classes at many of our worldwide 
locations. We also offer customized classes, which can be tailored to your needs 
and can be held at one of our locations or at your site. This training, conducted 
by experienced personnel, will assure that you will be able to maintain system 
reliability and availability. 
 
Field Service engineering on-site support is available, depending on the product 
and location, from many of our worldwide locations or from one of our Full-
Service Distributors. The field engineers are experienced both on Woodward 
products as well as on much of the non-Woodward equipment with which our 
products interface. 
 
For information on these services, please contact us via telephone, email us, or 
use our website: www.woodward.com. 
  



MotoHawk Resource Guide Manual 36333A 
 

 

 

86 Woodward 

How to Contact Woodward 
 
For assistance, call one of the following Woodward facilities to obtain the address 
and phone number of the facility nearest your location where you will be able to 
get information and service. 
 
Electrical Power Systems 

Facility --------------- Phone Number 
Brazil -------------- +55 (19) 3708 4800 
China ----------- +86 (512) 6762 6727 
Germany --------- +49 (0) 21 52 14 51 
India --------------- +91 (129) 4097100 
Japan -------------- +81 (43) 213-2191 
Korea -------------- +82 (51) 636-7080 
Poland -------------- +48 12 295 13 00 
United States ---- +1 (970) 482-5811 

Engine Systems 
Facility --------------- Phone Number 
Brazil -------------- +55 (19) 3708 4800 
China ----------- +86 (512) 6762 6727 
Germany ------- +49 (711) 78954-510 
India --------------- +91 (129) 4097100 
Japan -------------- +81 (43) 213-2191 
Korea -------------- +82 (51) 636-7080 
The Netherlands - +31 (23) 5661111 
United States ---- +1 (970) 482-5811 

Turbine Systems 
Facility --------------- Phone Number 
Brazil -------------- +55 (19) 3708 4800 
China ----------- +86 (512) 6762 6727 
India --------------- +91 (129) 4097100 
Japan -------------- +81 (43) 213-2191 
Korea -------------- +82 (51) 636-7080 
The Netherlands - +31 (23) 5661111 
Poland -------------- +48 12 295 13 00 
United States ---- +1 (970) 482-5811 

 
You can also locate your nearest Woodward distributor or service facility on our 
website at: 

www.woodward.com/directory.aspx 
 
 

Technical Assistance 
If you need to telephone for technical assistance, you will need to provide the following information. 
Please write it down here before phoning: 
 

Your Name  
Site Location  

Phone Number  
Fax Number  

Engine/Turbine Model Number  
Manufacturer  

Number of Cylinders (if applicable)  
Type of Fuel (gas, gaseous, steam, etc)  

Rating  
Application  

Control/Governor #1  
Woodward Part Number & Rev. Letter  
Control Description or Governor Type  

Serial Number  
Control/Governor #2  

Woodward Part Number & Rev. Letter  
Control Description or Governor Type  

Serial Number  
Control/Governor #3  

Woodward Part Number & Rev. Letter  
Control Description or Governor Type  

Serial Number  
 
If you have an electronic or programmable control, please have the adjustment setting positions or 
the menu settings written down and with you at the time of the call. 

 



 

 

Revision History 
 
 
Changes in Revision A— 
• Convert data from MotoHawk brochure format to Woodward technical manual format 
 
 

  



 

 

 

We appreciate your comments about the content of our publications. 

Send comments to: icinfo@woodward.com 

Please reference publication 36333. 

 
 
 
 
 

 

 

PO Box 1519, Fort Collins CO 80522-1519, USA 
1000 East Drake Road, Fort Collins CO 80525, USA 
Phone +1 (970) 482-5811 • Fax +1 (970) 498-3058 

Email and Website—www.woodward.com 

Woodward has company-owned plants, subsidiaries, and branches, 
as well as authorized distributors and other authorized service and sales facilities throughout the world. 

Complete address / phone / fax / email information for all locations is available on our website. 

2012/5/Skokie 
 


