\..WOODWARD

Product Manual 36333
(Revision A)

Original Instructions

MotoHawk Development and
Prototyping System

Resource Guide

This is the safety alert symbol. It is used to alert you to potential personal
’MPORTANT injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

) DANGER—Indicates a hazardous situation which, if not avoided, will result in death

or serious injury.

WARNING—Indicates a hazardous situation which, if not avoided, could result in

death or serious injury.

o CAUTION—Indicates a hazardous situation which, if not avoided, could result in
minor or moderate injury.

. NOTICE—Indicates a hazard that could result in property damage only (including
damage to the control).

. IMPORTANT—Designates an operating tip or maintenance suggestion.

DEFINITIONS

| The engine, turbine, or other type of prime mover should be equipped with an
overspeed shutdown device to protect against runaway or damage to the prime
mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover
control system. An overtemperature or overpressure shutdown device may also
be needed for safety, as appropriate.

installing, operating, or servicing this equipment. Practice all plant and safety instructions and

f Read this entire manual and all other publications pertaining to the work to be performed before
precautions. Failure to follow instructions can cause personal injury and/or property damage.

you have the latest revision, be sure to check the publications page on the Woodward website:
www.woodward.com/searchpublications.aspx
The current revision and distribution restriction of all publications are shown in manual 26311.

/_\ This publication may have been revised or updated since this copy was produced. To verify that

The latest version of most publications is available on the publications page. If your publication is
not there, please contact your customer service representative to get the latest copy.

electrical, or other operating limits may cause personal injury and/or property damage, including
damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or
"negligence" within the meaning of the product warranty thereby excluding warranty coverage
for any resulting damage, and (ii) invalidate product certifications or listings.

To prevent damage to a control system that uses an alternator or battery-charging
NO TICE device, make sure the charging device is turned off before disconnecting the battery

from the system.

To prevent damage to electronic components caused by improper handling, read
NOT’CE and observe the precautions in Woodward manual 82715, Guide for Handling and

Protection of Electronic Controls, Printed Circuit Boards, and Modules.

f Any unauthorized modifications to or use of this equipment outside its specified mechanical,

I Revisions—Text changes are indicated by a black line alongside the text.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is
believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly
undertaken.

© Woodward 2011

All Rights Reserved

Manual 36333A MotoHawk Resource Guide

Contents
]

ELECTROSTATIC DISCHARGE AWARENESS ...ctuiitiiiiiiiieeieeie et eeenieeneeaneeanns 1l
CHAPTER 1. GENERAL INFORMATIONuitttueiiteeetneeetieeesteeeteeesneeesneeesnneeenns 1
ADOUL MOTOHAWKeiiiiiiiie et et e e st e e s snbeee e 1
ECMB565-128 DEVEIOPEI'S Kil...uviiieeiiiiiiieiiieee s st e e e s er e e e e e s senrrnee e e e e e e 2
YV S G I R =To [V 1T =T 1=) S 3
MATLAB™ Installation ProCedUure.............viieiiiiiiiiiiiiee e e e 3
Green Hills Software Installation ProCedure............occuvviieieeiiiiiciiiiieee e 4
GCC Compiler Installation ProCeAUIecccoiiiiiiiiiiiie et 6
MotoHawk Installation ProCedure. ... 7
Creating an Application in MATLAB™ ... 8
Building Your APPHCAtION..........uuiiiiiaiiiiiee et a e 9
ASSEMDBIING YOUr Kit .ooiiiiiiiiiii e e e et e e e e e 10
Starting MOTOTUNEcviiiiiiee e e e e e e s e e e e s e s st b e e e e e e e s e snnrraneeas 11
CheCKING MOOSEIVETceeii et e e e e st r e e e e e e s sneraaeees 11
(1= Y= 11 o = W D] o] - S 13
(0 g1 Tod (oo @ o =T -1 1o o R 14
[TS 0 AY o] 0] 7= 1o o [14
Modifying the APPIICALION.eiiiiiiii e 18
INtroduCing & GaiN STAJEeviiiiiiiiie ittt 20
MotoHawk Data Storage BIOCKS.........ccoiiiiiiiiiiiiciiiiie e 22
[(0] (e N MU T @] o] i o] o - J PP TP 23
Calibration and Probing BIOCKSooiiiiiiiii e 24
LT L LTyl o Lol D= L= TP URP TR 25
Throttle Control ChalleNgE..........ccuiiiiiiiec e 29
Fault Detection on Throttle Pedal...........ccccooviiiiiiiiiiiie e 33
CHAPTER 2. FAULTS ittt e e e et e e s e e e e e e e eaas 34
T 10 [0 T o o PSR SPRRRR 34
MotoHawk Fault Theory of OPerationccccceiiuieeeiniiieeeiiiee e 34
(= LU] L =] (o o] PP 36
CHAPTER 3. CAN ottt et e e e e e e e aae e 43
] (oo [N T3 o] o HA PP 43
CAN BUS BASICS ... itiiiee ittt ettt ettt sttt e sttt e e s snbae e e e sntaeeeesnsaeeeenns 43
o 1[0 7= T £ SRR 44
PrOOCOIS ..o ittt et e e s areas 45
MotoHawk CAN Theory of Operation.........ccceevvieciirerieeee e e e rereee e 46
Using CANKINg to Observe the BUS...........cooiiiiiiiiiiieie e 48
BaSIC CAN BIOCKS......ciiiieiiiiieiiee et e e ee e e e e 51
CAN Channel DefinitioN...........oocueiiiiieiee e e s 51
CAN TranSMIt RAWoeiiiiiiiiiiiii et e e e e e e reeeeas 52
CAN RECEIVE RABWeeeiiiiii ittt e e e as 53
Y (o] a (o] 1T 1 [T TP PUPP TR 54
Y (10 = (Yot AT 4 o T =T PRSP R 55
Example of BasiC CAN BIOCKScoccuiiiiiiiie et 55
Advanced CAN BIOCKSccuviiiiiiiiie et e 57
Message Definition StIUCLUIEoeiei i e e e 58

Woodward i

MotoHawk Resource Guide Manual 36333A

Contents (cont'd.)

CHAPTER 4. MEMORY MANAGEMENT ...ttt 63
Ta 1o o [0 Tox i o] o IR EPP TR 63
(0= 11o] =10 o = 3RO OPPPRPTRPRRN 65
PrOBES .. e e ee e e e 65
@Y1 o =TSRRI 65
BIOCK PArameLersScoiiiiiiiie ittt e 66
Data Storage BIOCKScii i 72
MotoHawWK LOOKUP TabIESuuiiiiiieie it 75
CHAPTER 5. BOOT KEY RECOVERY ..ottt ee et e e e e e 78
CHAPTER 6. MOTOHAWK ACRONYMS AND TERMS....cuoiiiiiiiiieiieiee e enaenn 79
CHAPTER 7. SERVICE OPTIONS ...uittiitiiitieicet e et et e e et e et asnssensssneeanees 83
Product Service OPLIONS.......ccuuiiiiiie et e e e s e e e e s e e e e e e ennnrrneeeeee s 83
Woodward Factory Servicing OPLioNScoouuiieiiiiiieeiiiee e 84
Returning EQUIpPMeENt for REPAIN.........ccoiiiiiiiiiiiie e 84
REPIACEMENT PAITSeiiiiiiiii ittt e e 85
ENQINEEING SEIVICES.....eiiiiiiiiiiitiiiee ettt a et a e e e e rnbbeeeeeaeas 85
HOW t0 CONtaCt WOOAWANT........uuiiiiiieeiiiiiieie et ee e 86
TeChNICAl ASSISTANCE ...ttt e e e e e bbb e e e e e e e 86
RV ST (0] N 5 1S 0] 5 22T 87

lllustrations and Tables
]

Figure 1. Electronic Throttle/Slider Potentiometer Schematic..............ccccueeeeeenn. 29

Table 1. Electronic Throttle Connector PiNOUL..............cuuveeeiiiiiiiiiieeeeeeeeeev e, 29

ii Woodward

Manual 36333A MotoHawk Resource Guide

Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others.
To protect these components from static damage, you must take special
precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

1. Before doing maintenance on the electronic control, discharge the static
electricity on your body to ground by touching and holding a grounded metal
object (pipes, cabinets, equipment, etc.).

2. Avoid the build-up of static electricity on your body by not wearing clothing
made of synthetic materials. Wear cotton or cotton-blend materials as much
as possible because these do not store static electric charges as much as
synthetics.

3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam
cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or
folders, plastic bottles, and plastic ash trays) away from the control, the
modules, and the work area as much as possible.

4. Do not remove the printed circuit board (PCB) from the control cabinet
unless absolutely necessary. If you must remove the PCB from the control
cabinet, follow these precautions:

e Do not touch any part of the PCB except the edges.

. Do not touch the electrical conductors, the connectors, or the
components with conductive devices or with your hands.

e When replacing a PCB, keep the new PCB in the plastic antistatic
protective bag it comes in until you are ready to install it. Immediately
after removing the old PCB from the control cabinet, place it in the
antistatic protective bag.

To prevent damage to electronic components caused by improper
NOTICE handling, read and observe the precautions in Woodward manual
82715, Guide for Handling and Protection of Electronic Controls,

Printed Circuit Boards, and Modules.

Woodward i

MotoHawk Resource Guide Manual 36333A

iv Woodward

Manual 36333A MotoHawk Resource Guide

Chapter 1.

General Information
]

About MotoHawk

MotoHawk® is a controls system application development tool that allows the
user to create Simulink® diagrams that run on rugged, automotive quality
embedded control modules. The tool allows you to access the inputs and outputs
of the modules, schedule when to execute tasks, manipulate the memory usage
of the module, create a calibration interface, and most importantly, allows a
single step build of the entire application. It extends Simulink and Real-Time
Workshop Embedded Coder to generate code necessary to interface with the
resources of the modules and control their behavior.

MotoHawk is built on Woodward’s ControlCore® production software framework
and supports a variety of applications using both single controller and distributed-
by-wire implementations. It is intended for control feature development, vehicle
calibration and fleet testing.

Features
e Auto-code generation of Simulink/Stateflow models using Embedded
Coder/Stateflow Coder
e Rugged controllers for prototyping and production
e ControlCore enabled software
e Off-the-shelf engine control libraries
e Calibration using MotoTune or CCP based tools

e Responsive engineering and support services for a wide-range
of applications

e Electronic control modules available for development, fleet and
production

Benefits

e Simpler, faster development

e Better testing using real ECM hardware

e Quickly develop and enhance software features in Simulink
e Analyze and control real-time OS from Simulink/Stateflow

e Direct access to the production controller’'s I/O from Simulink

e Readable documentation of system design automatically created
from models

e Lower cost for fleet testing; outfit an entire test fleet with rapid
prototyping capability

e Custom block-set allows for integration of both handwritten and
auto-code

® Simulink is a trademark of The MathWorks, Inc.

Woodward 1

MotoHawk Resource Guide

Manual 36333A

ECM565-128 Developer’s Kit

Parts List
ITEM NO. DESCRIPTION
1 ECM565-128 development module
2 ECM565-128 harness w/main power relay and fuse
3 Power switch assembly w/SmartCraft™ connector
4 SmartCraft to dual DB-9 adapter (GMLAM)
5 SmartCraft to dual J1939 adapter
6 10’ SmartCraft cable w/terminating resistors
7 10’ SmartCraft cable
8 SmartCraft terminating connector
9 6-port SmartCraft hub (2)
10 Optically isolated 4-port USB hub
11 USB to dual CAN adapter
12 Green Hills Software MULTI2000™ compiler*
13 Software installation CD*
14 Security dongle*
15 Boot key

(TM) SmartCraft is a trademark of the Mercury Marine division of Brunswick Corporation

(*) Green Hills software, security dongle programming, and applications included on
software CD are subject to your specific order and may not be included in shipment.

(1) USB hub may not included in kit as it is part of the Kvaser hardware and in future
orders may not be included.

Woodward

Manual 36333A MotoHawk Resource Guide

System Requirements

e Windows XP (any SP) or later (Windows 7 on MotoHawk 2010a and
higher)
e Pentium Il or IV, Xeon, Pentium

M, AMD Athlon, Athlon XP,
Athlon MP3.

e 345 MB disk space

e 512 MB RAM (1 GB or more
recommended)

e 16, 24, or 32 bit OpenGL capable
graphics adapter (strongly
recommended)

e Microsoft Windows supported
graphics accelerator card, printer,
and sound card

e 1400x1050 display (min)
(1600x1200 strongly recommended)

Note: User should also consider system requirements for MATLAB,
Simulink, RealTime Workshop, and RealTime Workshop Embedded Coder.

MATLAB™ Installation Procedure

1. Insert CD in drive. If the installer does not start automatically, click
Start/Run and double click on Autorun.exe.

2. Follow the instructions on the screen.

Note: If you have a network license for your installation you will need to
obtain a demo license from The Mathworks before training.

3. Install all of the following:

e MATLAB

e Simulink

e Real Time Workshop

e Realtime Workshop Embedded Coder
4. ltis strongly recommended that you also install:

o Stateflow

o Stateflow Coder

(TM) is a trademark of The MathWorks, Inc.

Woodward 3

MotoHawk Resource Guide Manual 36333A

Green Hills Software Installation Procedure
Insert CD in drive. Click Start/Run and double click Setup.exe. Follow on-screen
instructions.
Obtaining a License for Your MotoHawk Compiler

Once you have completed installation of the compiler on the unit that you will be
using to develop your application, you must generate a request for a license.

Green Hills Software License Request Generator [

1. Select Programs/MULTI2000,PowerPC v3.6/ Licensing/License Request
Generator.

2. Select “OK” at the following screen.

Windaws 1000 Licenidng In'ormalion

Each MotoHawk SDK includes one node locked license. Contact your
sales representative if more are desired.

3. Indicate which type of computer you have installed the compiler on and
select “Next.”

Green Hills Software License Request Generator gl

Licente Infomation v

Numios of ores. il

Lezense Availabley:
% Computerlocked: isense will be Iocked foths computer
" Dongledocked Beense wil be lncked 1 2 dangle
Floating icerssis] will be availsne b cthers ce youn nebacel.

Compuler Type:

™ Laptop Bevmnced |
* Desktop Help..
« Back Hext > | Sup

4, Select “Next.”

4 Woodward

Manual 36333A MotoHawk Resource Guide

5. The next message window contains the License Agreement. Read it,
then select “Yes” to continue.

Green Hills Software License Request Generator

Levense Aurcermen)

Plewie, e e folowsing iooras oot o b1 artrety 1| jou spse
kot terrs e the deeras agoement, plssse cheh, ™Y ®

Do e the le of e preceding koeres egeerert™

& Back Lk I Ha

You must accept License Agreement in order to use the compiler.

The next window contains the license request. Print or Save To File, then
send it. An evaluation license will be sent to the e-mail address indicated
in the Customer Information window, usually the same day.

Groon Hills Software License Request Generator [
I wemie Haogues -

Lt b e

e I

e 06 W S0

T e ben b we b o WL T X e e i Dl P ~
Fowdet, WULT 2900 Fown™C 16

[L P—_ e

KT Dot "wrw Gemes bl Praters

Lewres Foglaelty Corpats sk

[Lot 507 IRANSS MM AT 0

§ O SFAC WD ANSEF T ANDE BT TRE TERMY OF THE FRCLIGED GRS MILLE w

e Geret S Tafie «flack e

8. Follow the instructions that accompany the license file. A hard copy of
the License Agreement was included with your SDK.

9. FAX a signed copy to (805) 965-6343, Attn: Mickey Neal. Or email a
copy to Mickey.neal@ghs.com

A permanent license will be e-mailed to the address indicated in the
Customer Information window (usually the next business day.)

Woodward

MotoHawk Resource Guide Manual 36333A

GCC Compiler Installation Procedure

MotoHawk 2009b and higher supports the use of the GCC compiler as Beta Trial.
This is useful for getting up and running quickly or for initial development.

Note: GHS is the recommended compiler for production programs.

The GCC PowerPC eabi compilers are online at www.woodward.com.
Navigate to Support at the top pull down menu, and select Software.

The software is searchable by product name, key word, etc. Enter GCC
in the search field.

Note: There are two GCC compilers. The “SPE” version is for 55xx
modules such as the ECM-5554-112. The “non-SPE” is for 5xx modules
such as the ECM-565-128 or ECM-563-48.

Download the file to a temporary location.
Unzip the file. DO NOT run the installer from Winzip.
Run the installer.

/= Woodward | MotoH awk Control Solutions - Windows Intermet Explorer,

i v B 0 = ov Page~ Safey~ Toos- @

@@v [w o wondware com [[x] [ar

File Edit View Favortes Took Help

¢ Favoites | 5% &) Softwars Development Piod . £ Software Development Prod.. il FREE Online Barcode Gener.. 2] Home - Small Engine Controll.. Wa hitp-wiwe. woodward |2 OH 6.0 System Platform Doc.. £ TeamForge Weloome

s Woodward | MotoHawk Cortiol Salutions

Applications Products @ Markets Investors Careers News eBusiness

MB_W OODWARD About Woody

Engine Contrel Systems m Develo Regional Support
Aircraft Turbine b
Attermarket Capabilities H
Systems AOG Support Control Solutions [g N
PIAA Eligibility has
Engine Control Systems ¥ Regional Support bpment System
i Service Bulletins i i . i Existing cu
CO”UC_" Systems Upgrades and Contact Search tions has the advantage in today's competitive market with the downlo%ad f
Eetmfl'tsb tTools ¥ Electrical Power Systems knd sophisticated product features to the market quickly. MotoHawk
BYelopmsnicos Engin2 Systems)) Toolbox fre
GAP Industrial Turbomachinery bmplete suite of software tools to develop, test, configure, mes.wood
MotoHawk Control Solution ¥ Systeins falso includes a full range of MotoHawk-enabled electronic Contact
icati Engineering Services s as application needs change. And, it includes expert MCSInfo@
CT e T S Fie d Service/Technical Support pplicatic ge. And, P detail @
ControlCore Repair and Overhaul o help you rapidly develop your control systems. etails.
ControlCore ECM Hardware Customer Trainin) })
Fuel Economy Simulation Config--ration Files 9 been used productively in thousands of production
MotoHawk for Academia BT Mot
Partners Rotorcraft Regidyal Support
Software Suite Software
Training afiy Cthorization MotoHawk
engineerin
Diesel Engine p + hybrid vehicles control. cogmplex‘ r
Gas and Dual-Fuel Engines i) systems w
Vehicle Control Systems Call Woodward today to discuss how MotoHawk can be your rapid controls development system. environme
source coc
- R MotoHawk Software Tools Suite v
< | >
itp: /v, woodward, com/searchpublications. aspr [] S Local intranet da v BI0% -

Woodward

Manual 36333A MotoHawk Resource Guide

MotoHawk Installation Procedure

MotoHawk Software is also online at www.woodward.com.

Navigate to Support at the top pull down menu, and select Software.

Search the software products by name: MotoHawk, MotoTune,
MotoServer Runtime

Download the files to a temporary directory, unzip the files, and then
install downloads in the following order following the instructions for each
one:

e MotoServer Runtime

e MotoTune

e MotoHawk

Be sure your MotoHawk license dongle is in the USB port of your PC and
run the MotoHawk Version Selector to associate your MotoHawk
installation with your version of MATLAB.

If your version of MotoHawk is shown in grey, the MATLAB and
MotoHawk versions are not compatible.

(Start->Programs—->Woodward>MCS->MotoHawk)

You must use Windows Add/Remove programs to
uninstall all previously installed versions of MotoServer
and MotoTune prior to installation.

It is recommended that you DO NOT plug the adapter
NOTICE cable into the USB port prior to installing the
MotoServer and MotoTune.

It is also recommended that you download the CAN
King software — a useful tool when working with CAN
networks.

Woodward

MotoHawk Resource Guide Manual 36333A
Creating an Application in MATLAB™

Once you have completed the installation of your software, create a model to
verify operation.

1. Make sure your silver license dongle is in the USB port of your PC and
start MATLAB: Double click on the MATLAB icon on your desktop or
select from the programs menu.

2. The following screen will appear.

3. Atthe command line type: motohawk_project MyFirstProject.
Press the Enter key.

The following window will open. (Allow 1-2 minutes for the application to
complete.)

= o0 [homal ARupe . REES

Aetotausk i
& :"ii:;n::m hFrsProect ma T
. 5. Take note of the:
e e Target Definition
MyFirstProject

My i st ofeclmdl

oL Py1h et

/ e Main Power Relay

e Trigger blocks
%ese comprise a rudimentary
system. The executable algorithms

reside in the Triggered Subsystem
(foreground).

Mot oHauk K)

Targer: ECUSSS80 [DEV)
Flaa .

8 Woodward

Manual 36333A MotoHawk Resource Guide

You must change your Target Definition Block to match
your Hardware. Double click on the block and select
your ECM model from the dropdown list.

NOTICE

It is recommended that the Target Definition Block be
set to your hardware as the first step, as this defines
the available resources for the model.

Building Your Application

1. Press CTRL+B
The MATLAB window should look like this:

J MATLAB 7.10.0 (R20104)

Eio R Dol Dwbiop W bop
NG 42> s @ deg: CADocumenits and . -] @

Shortruts (£] Howtn Add] What's New

(T =L | Command Windaw Bl “O A O
o % (g Mk o= 0| o |0 Few o MATLART Wstch e Video, ean Demos, or rad el Sarted. *| Lisd., -;
| Horme -
| Hate . F
B irracvonc snem HATLAD desktcp keyboard ShOFECUts, Such as CEFl+, Are now custcmizable. Eans B
15 MyPrstProest_chose.m In addition, many keyboard shortcuts have changed Tor improved consistency
] Pt nd across the desktop,
() MeFrspanine ing
i)
51 (23 Myt Pt _ud
L) Liearies from the ac
) T
W e Click hece
Initinlizien
For:
Version:
Installed in: ©i\Program Files\Voodvard\HCS\Botolavk\Z0l0b_spo. 150
Ready.
LEL LIS
UON Starting MotoHawk Build o
#88 NMotolawk viksion: 2010b_spu. 150 W
HES NATLAD version: 7.10.0.499 (RZO10a)NHH
BEE 13-Jul-2011 14:08:35 HEH
MyiratPraject.mdl » LLL Ll
MyFrstEraject
== Green Hille Compiler v3.6 License Hol Available ===
Targer Module: ECUS55-80 (DEV)
DEV Executeble: MyFirstProject 000.sre
EotoTune DLL: ByFiratPr_00D.dll
Project GUID: 23449002 = $ddB =4 AT =Bek=dN=Df = der=d1 B mnl)
Build GUID: 1oe-90-0 : #1
Generating code and build scripcs only
Will not execuce build to creace .dil and .zrz
UEN Starting Real-Time Vorkshop build proceduse for model: MyFicstProject
UON Ganmrating code into build directory: C:\Dociuments and Sectings)ubolak\Ny Docusents)EATLAR,NyFiestProject|NyFicatp
3
b3 B |4]
Dusy

2. If the message says “Successful MotoHawk Generation (NoBuild)”:

b) You may need to place a Tool Chain Definition Block in your
model. Drag a Tool Chain Definition Block from MotoHawk/Build
library in Simulink into your model and select your installed
compiler.

c) Check your Green Hills compiler installation: Type
“motohawk_check_ghs” (a zero indicates that you have a
problem with your Green Hills compiler installation).

3. If you get an error, check with your instructor or email the log file
(MyFirstProject.log in this example) to: MCSsupport@Woodward.com. A
technical support representative will contact you.

Woodward 9

MotoHawk Resource Guide Manual 36333A

4. Once you have successfully built your default application, open Windows
Explorer and navigate to the C:\ECUFiles directory.

5. You will see a number of subdirectories including Programs and
TDBDLL. These subdirectories contain, respectively, the .srz and .dlI
files which are used by MotoTune to program the ECU.

Assembling Your Kit

Install your isolated USB hub and apply power.
Insert your silver MotoTune dongle into the hub.

Connect the USB to CAN adapter and wait for Windows to auto-detect it.
When the New Hardware window appears select “No, not this time” and
click on “next.” Then, let Windows automatically install the drivers.

4. Connect the Development Harness to the module. (See datasheet for
proper positioning.)

5. Connect Power branch to a 12 volt source (9V to 16 V, 3A min.) Attach
the SmartCraft connector, USB to CAN adapter, and the power switch to
the 6-position hub.

¥

)‘r

6. The boot key is not needed for normal programming or calibration so it
can be set aside. Errors in configuration, logic and/or other programming
made during program development (via .srz file) can cause a persistent
loss of CAN communications with the module under development. If this
happens, apply the boot key to force the module into reboot mode,
reloading the module with functional program code (a known, valid .srz
file) in order to allow resumption of module communication.

10 Woodward

Manual 36333A MotoHawk Resource Guide

Starting MotoTune

1. From the Start menu (or desktop shortcut) select
All Programs/MotoTools/MotoTune.

2. The following window appears.

3. The name that was used to order your kit should appear at the top of the
window. If it indicates [Unlicensed,] then you need to insert/reinsert the
silver dongle.

Checking MotoServer

1. Right-click on the Satellite Dish icon for MotoServer (located on the
system tray).

Select “Ports”.

3. If not already listed, add location PCM-1 as a CAN type port with Access
Level 4; check the box on the list; and click on “Apply”.

4. You are now ready to connect to the module.

Woodward 11

MotoHawk Resource Guide Manual 36333A

Programming the Module

1. Turn power on and apply ECUP signal via power switch.
2. Select File/Program, in the MotoTune window. The following pop-up

appears:
Lock i | Pragams - ¥ e g
3 = MyFrasrogect 001wz
LD :
iy Nacari
Docamart
)
[
[P —
T
iy Compute
‘_g' Vi e * =
iy B i o e Pragrarsersg Fles o m "l - | Cwos
Lacmer,
(L1} - T vty Qe

3. This is the file created when you pressed CTRL+B.
Double-click on the .srz file in the window.
5. The Program ECU status pop up appears.

If the Program ECU status pop-up doesn’t advance to “Connecting,”
check your CAN to USB and SmartCraft connections. If they are
operational, turn power off.

!.Hl-ih-rEG'.ImPO” Larrecrg

o — 'TEJ

6. Install the BOOT KEY from your kit onto the SmartCraft hub.

ECU555-128 users will also need to move the fuse from the Normal
socket to the BOOT socket to insure boot loader is invoked.

Double-click on the .srz file and apply power.

If this does not work, check with your instructor or send an e-mail to:
MCSsupport@woodward.com

9. When you see the “Programming Successful” message you are ready to
create a display for your application.

12 Woodward

Manual 36333A MotoHawk Resource Guide

Creating a Display

1. Inthe MotoTune Window, select File/New/Online Display/Calibration.
2. Select Display on the pop-up and click on “OK.”
The Create New Display window appears.

| Paren iy bm e

iy e
[cimee na

P i |]
T feiay bl i

Eems D
Gy T

N
T

Give your display a meaningful name (ie. MyFirstProjectDisplay).
Select “Next” for default Row and Column settings.
Select “Next” for default Status Bar and Tab Control settings.

S

Use default Sheetl by clicking on “Finish.” The following should appear:

~ Wy irstPeejectDispliy

T=

=

=

ol

[

[

s

g 5|.=[

s[;

CE]

|s|'.:

EREIRE LN 1¢ »

[oormeted [FOM-1]

7. Click on the “+” next to the MyFirstProject folder (listed on left side of the
MotoTune window).

8. Open the following folders:

e Foreground folder
e Controller folder
e Plant folder
9. Double-click on the Foreground block in your Simulink model.

Note the one-to-one correspondence between the MotoTune folders and
the subsystems in your model.

Woodward 13

MotoHawk Resource Guide Manual 36333A

Checking Operation

Open the System folder, then the Performance folder.
2. Drag each of the display variables onto the spreadsheet.
Note that your system is running — these are its vital statistics.
3. Cycle the power switch off, then back on.
Note that the display values briefly disappear, then return.
The Main Power Relay can be heard releasing and engaging.
Close this model by clicking on the red “X” in the upper right-hand corner.

You will be prompted to save the model. We are done with this one —
you may save or not.

First Application

Click the Simulink icon located on the top of the MATLAB window.
Simulink’s Library Browser appears —» [Slr T

e B Ves Hap

These are the Simulink and MotoHawk [D& = #&

blocks which are used for creating your e e e
application models.

LR
B Corremonty |iad Biocks
B Comtrucs

3. Inthe MATLAB window, move up one
level to the “work” directory. Create a
new directory “MySecondProject” a

double-click on it. g - Casarintes
4. In the library browser, click here. b o s e
A new model window opens. : :::::'f;“ﬁ (P —
5. Note the status window in the lower left - ‘”__]';:::“‘ Lok by
hand corner. It indicates ODE45 which & Sqgnal foumng Gk
stands for Ordinary Differential Equation o
4th and 5th derivative (Dormand-Prince & User Ciefrec Functoms P
method,) which is the type of solver that i ortgieibatusios | [T
will be used for simulations. + W MotoHask Arnotations

Fats b Tullagsiens
« B Das Tere Werkahop

+ W Paak-Ters Werkshop Embadd

+ W Seruink Bowras Pl e
W Sefice Sl Rien
Tein
L
L {1t | urwies
. " B e [SRl b [y
Pepchy

14 Woodward

Manual 36333A MotoHawk Resource Guide

Generating Embedded Code

In order to generate embedded code we must change to a fixed-step discrete
solver as follows.

1. Select “Simulation” at the top of the window, then “Configuration (or
Simulation) Parameters”.

The following window appears.

Taptes VE

P

=] |

2. Using the pull downs, change Type to Fixed-step, and Solver to Discrete
(no continuous states.)

3. Click on “Apply” and “OK”.

In the library browser, click on MotoHawk. Drag the MotoHawk Target
Definition block from the bottom of the list into your model.

Double-click on the block and verify that the target module is correct for
your kit (80 pin, 128 pin, etc).

The Memory Layout should be DEV.
5. Click on “Apply” and “OK”.

From the Trigger Blocks library, drag a MotoHawk Trigger block into your
model. Double-click on the block to open the dialog box and set the pull-
down to FGND_RTI_PERIODIC.

W s e dwew e PR
osaa

CEWES. mEm @

- ' u-n;:«llﬂu
on toma
Mot oHauk s i
Target: ECU555-80 (DEV)
Floating Point. single (32 bits)
Stacks - FGND: 3072 BGND: 2048
IDLE: 1024 IRQ: 1536 FOMD_RT)_PERIOCSC
Heap Size: 4096 Prioety Geoer. O
DLL Filenama: MySecondP_013

SRZ Filename: MySecondProject_013

Total FLASH: 186752
Total EEPROM: 1784
Total RAM: e)
App EEPROM 1753
App RAM: y
. o
= i

Woodward

15

MotoHawk Resource Guide Manual 36333A

10.

11.
12.
13.

14.

15.

16.

Click “Apply” and “OK”.

From the Extra Development Blocks library, drag a Main Power Relay
block into your model.

(Default settings will serve our purposes for now.)

From the Ports & Subsystems library drag a Function-Call Subsystem
block into your model. Double-click on this block and a new window
appears.

From the Sources library, drag the Sine Wave block from the bottom of
the list into your model.

Click on Sinks and drag a Scope block into your model.
Click on Math Operations and drag in a Gain block.

Note the greater than (>) symbols on each block. These are Simulink
ports that are used to control the signal flow through your model. The
Sine Wave block, being a signal source, has only one (output) port.
Likewise the Scope block, being a sink, has only one (input) port, while
the Gain block has one of each.

More complex blocks will have more input or output ports or both.

Select the Sine Wave block, hold down the CTRL key and click on the
Gain block.

Notice how Simulink connects the two blocks. This technique can be
used to “wire” the blocks to one another and is especially useful when
wiring signals to or from consecutive ports on a block. Simulink will start
at the top and work down either side (in or out) of the block.

At the top level of your model, connect the trigger block to the subsystem
block. Select File/Save As. Give your model a meaningful name (ie.
MySecondProject) and click Save.

Press CTRL + D.

Notice that Simulink has generated an error message and highlighted the
offending subsystem and block — informing us that “only constant or
inherited (-1) sample times are allowed in triggered subsystems.”

16

Woodward

Manual 36333A

MotoHawk Resource Guide

17.

18.

19.

20.

21.

22.

23.

24,
25.

26.

27.

28.

29.
30.
31.

Double-click on the Sine Wave block to open its dialog box.

At the bottom of the dialog box the Sample Time is zero. As you may
have guessed this means continuous.

Change it to -1 (inherited.)

The subsystem will now inherit its sample time from the parent (level
above) which is FGND_RTI_PERIODIC or 5 milliseconds.

Press CTRL + D again.
No error messages are generated.

Double-click on the scope — a pop-up window appears complete with
grid and axis markings.

Select Simulation/Start — a Sine wave appears.

Double-click on the Gain block, change to 100.

The small triangle in the middle of the window at the top can be used to
start the simulation. Note that the Sine wave has changed.

Click on the binoculars icon.

This will scale the display for your input automatically. Clicking on the
name of the subsystem (Function-Call Subsystem) opens it for editing.

Change the name to “Foreground.”
Press CTRL + B.
MotoHawk builds your application.

In the MotoTune Display Explorer pane, right-click on Displayl on
[PCM-1]]

Select “Save As” and give it a meaningful name (ie.
"MyFirstProjectDisplays”). Use pulldown to specify the folder.

Note that while MyFirstProjectDisplays contains only
MyFirstProjectDisplay, it may contain others that provide different views
into the system.

Right-click on MyFirstProjectDisplays and select Close.

Currently, this is the only way to close one display and open another in
MotoTune.

Select File/Program and download MySecondProject into the module.
Create a new display as above. (ie. “MySecondProjectDisplay”).

Drag in your System Performance variables and observe via your display
and the Main Power Relay that your application is running.

Woodward

17

MotoHawk Resource Guide

Modifying the Application

This procedure allows you to gain some control over its operation.

Eie Edk Yww ‘ooo Hop
DSHS| ‘8 |esd ocRnEm

10.

11.

12.

toded infa
Frijun 03 19°06:33 2011
MotoHawi 201 1a_spl. 184

) Mot oHquk

Target: ECLS65-128 (DEV)

Floating Point: aigom kits)

Stacks - FGND: 3072 BGND: 2048
IDLE. 1004 IR 1538

Heap Size: 40%

DLL Filename: MotoHawk 000

SRI Fianaene: MolcHwat lib 000

Tatal FLASH:
Tatal EEFROM
Tatal RaM
App FLASH
App EEFROM

Double-click on the Foreground block in your model; select the Sine
wave generator and the gain block.

Press the delete key to remove these blocks.

From the Calibration & Probing Blocks library, drag a motohawk_calibration
block and a motohawk_probe block into your model.

From the Extra Development Blocks library, drag in a motohawk_abs_time
block.

Double-click on the Calibration block and change the name to ‘“TwoPi’
and the value to 6.28318.

The single quotes must be used.

From the Math Operations library, drag in a Product block.

Double-click on it and change the number of inputs to 3.

Right-click on the TwoPi block and drag down.

A duplicate block is added to your model.

Double-click on the new block and change its name to “f” and its value to 1.
Wire these 3 blocks to the inputs on the Product block.

From the Math Operations library, drag in a Trigonometric Function
block.

If it is not already set to Sine, change it.

Wire the output of the Product block to the input of the Trigonometric
Function block.

Wire the output of the Trigonometric Function block to the Scope block.

18

Woodward

Manual 36333A

Manual 36333A MotoHawk Resource Guide

13.
14.

15.

Double-click on the Probe block and change its name to Sine.
Place the cursor over the input port of the “Sine” Probe block.
Notice that the cursor changes into a cross-hairs.

Click on the port and drag to the wire connecting the Trigonometric
Function block and the Scope.

A connection dot appears on the wire and a wire connects to the Sine
Probe block.

. Your model should look similar to this

5 s e e T EmDS BESTe

[x]

function

17.
18.
19.

20.
21.

22.

23.

24,

25.

v

Product

Press CTRL + D (see that there are no errors).
Press CTRL + B (verify that the build is successful).

Close the display in the MotoTune Display Explorer pane as above and
program the module with your modified application.

Select File/New and create a new calibration.

In the Calibration Explorer pane, Click on the “+" next to the
MySecondProject folder.

Double-click on Foreground.

A Calibration sheet opens in the right hand pane of the MotoTune
window.

Create another display sheet and drag it down or to the side such that
both are visible.

You should be able to see the Sine value changing.

Right-click on the cell containing the Sine value and select Properties.
Click on Set Fast and verify that the Add to chart/log box is checked.
Click OK.

Select Chart/Open Chart.
A pop up appears displaying your Sine wave.

Woodward

19

MotoHawk Resource Guide Manual 36333A

26. In the Foreground sheet change the “f” value to 2.
Note the frequency changes when the Enter key is pressed.
27. Change “f" to 0.5 — observe change in chart.

Occasionally, flat spots will appear on the chart — a result of Windows
OS “garbage collection” and other operations, and is no cause for
concern.

Introducing a Gain Stage
There are two methods for introducing a gain stage.

Method 1: Add a Gain block from the Math Operations library.

Method 2: Add a Product block from the same library and a Calibration block
from the MotoHawk library.

In the case of a Gain block; Real Time Workshop will allow us to change the
Gain value during simulation but our objective is to generate embedded code.

The RTW Embedded Coder treats a Gain block as a hard-coded constant which,
precludes changes at run-time. Therefore, we will use the second approach; an
“Amplitude” calibration block and a product block.

1. Select the wire connecting the Trigonometric Function block and the
Scope and press the Delete key.

Right-click on the TwoPi block and drag a copy to one side.

Double-click on the new block and change the name to ‘Amplitude’ and
the value to 10.

4. Likewise, copy over the product block and change its Number of inputs
to 2.

5. Connect the new calibration block and the Sine block to the product
block inputs.

Wire the product block output to the Scope and Sine probe block.
Your model should look similar to this:

= =
=] e

20 Woodward

Manual 36333A MotoHawk Resource Guide

8. Press CTRL + D and verify that there are no errors.
9. Then press CTRL + B to build it.

10. Program the module with the new application. Set up your display and
calibration windows in MotoTune as before.

11. Open a chart for the Sine probe and verify the amplitude value.
12. Now change the amplitude to 100.
Note that the display is rescaled for the new value.

If a Cosine signal of the same amplitude is also needed, hold down the
Shift key and select the Amplitude, Trigonometric Function, Product, and
Sine Probe blocks from the Right side of the drawing.

13. Right-click and drag down to copy them.

14. Wire the blocks together as before, connecting the input of the
Trigonometric Function to the output of the Product block on the Left.

15. Change the Trigonometric Function to Cosine and rename the Probe
block accordingly.

16. Your model should look similar to this:

17. Press CTRL + D.

18. Read the error message. Simulink is complaining that the name
‘Amplitude’ is not unique. We could rename this, but we know that the
value is important and it would be convenient to be able to re-use it. The
way to do this is to use the MotoHawk Data Storage blocks.

Woodward 21

MotoHawk Resource Guide Manual 36333A

MotoHawk Data Storage Blocks

1. From the library, drag a motohawk_data_def block and a
motohawk_data_read block into your model.

2. Double-click on the motohawk data_def block, change the name to
‘Amplitude’, change the Storage Class to constant, and verify that
“Attach a VarDec for Visibility from MotoTune” is checked.

3. Highlight the two calibration blocks called “Amplitude” and delete them.

Double-click on the motohawk_data_read block, change the name to
‘Amplitude’, and drag it over to one of the loose wires left by the previous
deletion.

5. Right-click on the motohawk _data read block and drag a copy over to
the other loose wire.

6. Press CTRL + D again.
No errors should be generated.

7. Build your model, program the module, and set up your display and
calibration windows as before

8. Right-click on either the Sine or the Cosine value and set the properties to:

e Fast
e Add to chart/log
e Applytoall

9. Click OK.

10. Select Chart, Open Chart and observe your signals.

11. In the calibration pane change the Amplitude value and observe the
changes in your signals.

For calibration values that are used in only one place in the model, the
motohawk_calibration block is a convenient means of introducing the
variable.

When a calibration is to be used in more than one place, a
motohawk data_def block with motohawk data_read blocks is best.

12. Double-click on the motohawk_data_def block.

A brief description of the block’s parameters appears at the top of the

dialog box. In addition to the variable’s name, initial value, and storage
class, we can specify a data type (click on the pull down to see them),
and an Output Reference Data type (for pointer based operations.)

Storage Class Parameter allows us to specify the type of resource that
will be allocated for the variable.

Constant, as the name implies, does not change unless a tool changes it.
Volatile will be re-initialized at power up.

Non-volatile will be preserved across a controlled shut-down/power-up
cycle (when MPRD block or similar construct is included in the model).

22 Woodward

Manual 36333A MotoHawk Resource Guide

MotoTune Options

Attach VarDec for Visibility

Selecting ‘Attach VarDec for Visibility’ from MotoTune expands the dialog box,
giving us more options:

e a choice of which pane to view it in: Calibration or Display
e the option to restrict Read and Write access level
e whether to use uploaded calibration values from MotoTune

e how to view the value: Number, Enumeration (on, off, running, stopped,)
or Text

Select the Help button at the bottom of the dialog box to view remaining options.

If the MPRD block is not used, a motohawk_store_nvmem must be included in a
background subsystem in order to execute the transfer to EEPROM (with the
caveat that there are a limited number of write cycles for the EEPROM devices.)

Also, when a revised model is downloaded to the module, the values stored in
EEPROM will be loaded into RAM unless the structure has changed or the
RestoreNVFactoryDefaults function is invoked from the System\NonVolatile
Storage folder in the Display pane.

Example: You are adjusting calibration values and you decide to change the logic
in your module (ie. change a greater-than to a greater-than-or-equal-to.) You can
rebuild the application, reprogram the module, and pick up where you left off,
without having to up-load the calibration.

Woodward 23

MotoHawk Resource Guide Manual 36333A

Calibration and Probing Blocks

Another useful block is the motohawk_override_abs block from the Calibration
and Probing library.

1.

Drag one into your model and place it over the wire connecting the first
product block to the trigonometric function blocks.

Note: Simulink breaks the wire, making the necessary connections.

Double-click on the block and give it a meaningful name
(ie. “Angle_Override”).

Click on Apply and OK.
Press CTRL + D and CTRL + B.

Program the module and set up your Display and Calibration panes as
before.

Your model should look similar to this:

b - e

7.

10.

11.
12.

Drag the two new parameters from the Foreground\Angle_Override
folder into the Display spreadsheet.

Start a chart for your Sine and Cosine waves.
Set Angle_Override_new to 3.14.

Click on the value for Angle_Override_ovr.

A pull-down arrow appears next to the cell.
Click on the pulldown and select override.

Look at your chart to see the effect of this change after pressing Enter.
As expected, the Sine value goes to 0 while the Cosine value goes to -1.

The override is a display, not a calibration.
Display or Calibration... What's the difference?

Displays allow the engineer or technician to monitor or manipulate
signals in the system to establish conditions necessary for testing or
calibration.

24

Woodward

Manual 36333A MotoHawk Resource Guide

The changes made via Display variables are not saved in the .dis file and
so do not persist past the MotoTune session.

On the other hand, Calibration changes are saved in a .cal file and can
be Merged with or Transfer Upgraded into another calibration (or .srz) file
to create a new .cal (or .srz) file which contains the desired changes.

Gathering Data

We have seen how a data definition block is used to introduce a constant into the
system. Now, look at how it can be used to gather data from our system.

1. From the Ports & Subsystems library, drag in an enabled subsystem and
delete the scopes.

Double-click on the enabled subsystem and a hew window opens up.
Delete the output port and copy the input port by right-clicking on port 1.

From the commonly used blocks library, drag in a constant block and a
sum block.

From the math operations library, drag in a math function block.
From the discrete library drag, in a unit delay block.

Right click to copy the constant block. Set the value of the new
(constantl) block to 200.

7. Double-click on the math function block and use the pull-down to select
mod (modulo) function.

Click on Apply and OK.
Right click on the mod block and select format and flip block.
Likewise flip the unit delay and constantl blocks.

10. Wire the constant and mod blocks to the sum block inputs.

11. Wire the output of the sum block to the input of the unit delay block and
the outputs of the unit delay and constantl blocks to the inputs of the
mod block.

12. From the data storage blocks library, drag in a motohawk_data_write
block and make a copy of it.

13. Double-click on the first data write blocks. Name it SineData.
14. Using the pull down, set data structure to vector.

15. Name the second data write block CosineData and make it a vector as
well.

16. Wire the idx input of each data write block to the output of the sum block.

17. Wire inputl to the data input of the SineData block and input2 to the
CosineData block.

Woodward 25

MotoHawk Resource Guide Manual 36333A

18. Your enabled subsystem should look like this:

lath
Function

Constant?

E}) cata Diata Write
in Sinelata
e doubie(id]

£
@' P{data Doy yrite
In2 CosineData
[doubla(idy]

7%

19. Save file and close this window.

20. In the Foreground window, right-click on the Amplitude data definition
block and make two copies.

21. Double-click on the first copy, change the name to SineData, change the
Storage Class to NonVolatile, and change MotoTune Window to Display.

22. Place the following in the Initial Value box: zeros (1,200).
23. Click Apply and OK.

24. Double-click on the second copy, change the name to CosineData,
Storage Class to NonVolatile, and MotoTune Window to Calibration.

25. Click Apply and OK.

26. Place the following in the Initial Value box: ones (1,200).
27. Copy the ‘f' calibration block and rename it.

28. Log and set the initial value to zero.

29. Wire the Sine signal to In1 and the Cosine signal to In2 of the enabled
subsystem.

30. Wire the Log block to the input at the top of the enabled subsystem.

26 Woodward

Manual 36333A MotoHawk Resource Guide

31. Your model should look like this:

32. Press CTRL - D. If there are no errors, press CTRL - B.
33. Start MotoTune and create a hew display and a new calibration.
34. In the display pane expand MySecondProject and Foreground.
35. Drag SineData into the worksheet.
Note that all of the values have been set to zero.
36. In the calibration pane, expand MySecondProject.
Note the folder and sheet of paper, both named Foreground.
Expand each to see their contents.

The folder contains the CosineData vector array (another sheet of
paper). The sheet of paper contains the scalar variables. Both have been
defined in the Foreground layer of the model and the default group string
was used.

37. Double-click on the Foreground and the CosineData sheets of paper and
arrange them in the window.

Woodward 27

MotoHawk Resource Guide Manual 36333A

38. Your window should look like this:

11y
b

RS R.SmERS

1T,

39. Note that the CosineData array contains all 1s.
Changing the Log variable to 1 enables the subsystem that logs the data.
The SineData array changes immediately, but the CosineData does not.

40. Select Calibration-Refresh Volatile Map (or press F5) and the
CosineData array is updated.

The Sine Data array may be used to examine the Sine values and can
be copied and pasted into a spreadsheet for analysis.

If there is no need to edit the values offline (factory defaults are a good
starting point for an adaptive algorithm,) the Display variable will suffice.
If, however, the values are best customized based on which variety of
installations it will be used on, then the Calibration variable is the one to
use.

28 Woodward

Manual 36333A MotoHawk Resource Guide

Helpful Tips

Here are two ways to help minimize confusion:

1. Utilize the Show MotoTune Group check box and explicitly name the
MotoTune Group String.

2. Place the data definition blocks in the enabled subsystem.

The system designer needs to decide the best way to organize these data
structures.

A CTRL - B is required to generate a new DLL.

Throttle Control Challenge
The following example uses a slider potentiometer and an electronically
controlled throttle assembly: (Woodward P/N: 6945-5001 40MM BOSCH ETC
[A 289 000 464-999]).

Table 1 lists the signals and their corresponding connector pin numbers.

Figure 1. Electronic Throttle/Slider Potentiometer Schematic

Table 1. Electronic Throttle Connector Pinout

PIN NUMBER SIGNAL NAME

Motor-
XDRG
XDRP
Motor+
POT2
POT1

OO |WIN|F-

Woodward 29

MotoHawk Resource Guide Manual 36333A

1. The Slider pot should be connected to XDRP, XDRG, and AN1M. POT1 and
POT2 should be connected to AN2M and AN3M respectively.

2. Consult the datasheet for your module to determine the appropriate wire
number for each of the signals.

3. Atthe Simulink command line, use the motohawk_project instruction to open
a new project. Name it ThrottleControl.

4. Double-click on the Foreground block and delete the Controller and Plant
blocks.

5. From the MotoHawk Analog I/O Blocks library, drag in a motohawk_ain
(Analog Input) block.

6. Select “Allow I/O pin to be calibrated from MotoTune,” and name the block
ThrottlePedal.

Select AN1M from the pull down and click on “Apply” then “OK.”
Drag in a Gain block and a motohawk_probe block.

Wire the ThrottlePedal block to the Gain block and the Gain block to the
motohawk_probe block.

10. Set the Gain block Gain to 100/1023.
11. Name your probe SetPoint.
12. Press CTRL - D.

In some versions of MATLAB, you may get a warning regarding
datatypes.

In this instance, the A/D on the 555 is 10 bits, which fits into a unit16.
Other resources have the following data types:

e Digital Inputs and Outputs are Boolean.
e Frequency Inputs and Outputs are uint32 (scaled by 0.01Hz).
e Duty Cycle Inputs and Outputs are int16.

13. Go to the top level of your model, double-click on the Target Definition block
and click on the “Floating Point Data Type” pull down.

The choices are:

e single (32 bits)

e double (64 bits)

e disabled
These determine the way that memory will be allocated during code
generation. The default is single (32 bits) and should not be changed

unless greater resolution is required or the target processor does not
support floating point operations.

30 Woodward

Manual 36333A MotoHawk Resource Guide

14.

15.
16.
17.

18.

19.

20.
21.
22.

23.

Return to the Foreground level of your model and drag a Data Type
Conversion block in from the Signal Attributes library. Place it between the
ThrottlePedal block and the Gain block.

Press CTRL - D again.
There should be no errors reported.

From the Format menu select Port/Signal Displays and check Port Data
Types.

The data type appears adjacent to each wire. This is a convenient way to
verify that your data types are consistent in your model.

Make copies of the analog input, data type conversion, gain, and probe
blocks.

Highlight them and select Format-Flip Block (or CTRL - I).
Select AN2M for the analog input, name the probe Feedback.

Drag in a motohawk _pwm block from the Analog I/O Blocks library and select
H1 as the resource.

Drag in a motohawk_calibration block. Name it ETC_ Frequency and set the
Default Value to 5000.

Woodward

31

MotoHawk Resource Guide Manual 36333A

Proportional Control Example
1. To make a proportional control like the one shown below:

Add a summing block. Copy and modify the gain block and data
conversion blocks.

When you first wire in your blocks, the data type adjacent to each wire
will indicate double (MATLAB's default), but when you press CTRL - D
they are updated to indicate the appropriate data type.

5] Myletfropect/Feangrasnd *
Fio Edt Viw Smuison Fomal Toos Hep

0O&dS LSRR] L3RI T 7™ -l s B REmE

Modd T igL =
= PROPRIETARY
W | | oAy MetoHguk Woodward
9,{ e AL 1000 Eaal Lrabe Auoird . Fedd Coliing, £0. BO
- THE MAPOE A TION CONTAMAED I TS o BT i 08) BB
B

W

.....

w
e My1stProject
o Foreground

15 PR e, B 200y

Ready 100% FomefitepDincrete

2. Press CTRL - B to build your model and use MotoTune to download it to
the module.

3. Operate the Throttle Pedal slider and observe the behavior.

This model is a simple proportional control. Realistically, a more complex
control is required.

This value represents the difference, or
error, between the Throttle Pedal Value

and the actual Throttle Pedal Position.

32 Woodward

Manual 36333A MotoHawk Resource Guide

Fault Detection on Throttle Pedal

The next model introduces rudimentary fault detection on the Throttle Pedal
Position sensor and adds an integrating term to the command signal. It also
includes diagnostic probes and calibration for Proportional and Integral gains.

Modify your drawing to look like the one shown above.

Press CTRL - D to check your model. Then build it using CTRL-B.

Open a display and a calibration in MotoTune. Set up your probes and
adjust the ETC_Frequency value until the high pitched sound can no
longer be heard.

4. Set the Integral Gain to zero and increase the proportional gain until the
throttle plate exhibits ringing when operated.

5. Open a chart and increase the Integral Gain until the traces for SetPoint
and Feedback come together.

The Error trace should be zero.

Woodward 33

MotoHawk Resource Guide Manual 36333A

Chapter 2.

Faults
]

Introduction
This chapter covers the basics of faults within MotoHawk.

Faults are used to indicate failures within a system. For instance, if a sensor
becomes disconnected, the application can detect this out of range condition and
signal the issue via a fault.

Fault diagnosis usually accounts for 50-70% of the code within any production
application. In other words, when you have the control logic done but not the fault
detection, you are only about 1/3 to 1/2 done with your application.

MotoHawk provides a nice set of blocks to help you signal faults and take actions
as a result of faults.

Faults are nothing more than signals that some logic has found an issue within
the system.

Fault diagnosis and identification is a complex subject that changes based on the
application. However, you will find that all good applications at least diagnose
sensor failure, and should diagnose actuator failures if possible. Why? Because
wiring harnesses fail, sensors fail, and actuators fail.

Ideally, your application will do these things well:

e Fault Containment. The act of keeping a fault from propagating to
other parts of the system.

e Fault Identification. The act of determining, as precisely as
possible, the source of the fault.

e Fault Annunciation. The act of reporting the fault to someone who
can fix it.

e Fault Action.The act of adjusting system operation in response to
the fault.

Some faults are easy to detect — like a signal being out of range. Others can be
terribly difficult — like a signal stuck in range. Unfortunately, MotoHawk does not
help you with containment or identification problems. That is the job of the
application designer. MotoHawk will however, allow you to record the faults, help
annunciate them and help interface to action code.

MotoHawk Fault Theory of Operation

MotoHawk contains a series of blocks that allow you to signal a fault, read the
fault status, change the fault status, and take fault actions. The easiest way to
think about this — you have fault signals and fault actions.

e Fault Signals are an indication that a fault has occurred.

e Fault Actions are what the application should do when various
faults occur.

34 Woodward

Manual 36333A MotoHawk Resource Guide

Routing Multiple Faults to a Single Fault Action

MotoHawk allows you to route multiple faults to a single fault action. This is a
powerful idiom that will simplify the designer’s job. Because fault actions are
independent of faults, there is no need to define various levels of seriousness to
the faults. The seriousness is contained within the application.

For instance, an engine designer may design a fault that detects low oil pressure
and an action that is capable of shutting down the engine. The designer can then
decide if low oil pressure is worthy of shutting down the engine.

Often times, this decision cannot be made at design time. You may be building
an engine that can be installed in a trash truck and a fire truck. Shutting down a
trash truck because of low oil pressure is probably very desirable so that the
engine can be repaired. However, most fire departments would just as soon
pump water onto the fire until the engine is reduced to a pile of molten metal
rather than shut the engine down.

MotoHawk respects this and allows you to calibrate faults to fault actions, rather
than requiring the routing be set at design time. This allows a single code build to
handle both of the example cases with just a change in the calibration.

Fault Filtering

Faults also need to have filtering. MotoHawk faults provide an X out of Y test
which basically says that the fault must be present X times out of Y samples to
be declared active.

Faults are considered “Suspected” whenever any of the Y number of samples
have detected the fault but the number is less than X. Faults are “Active” when at
least X out of Y have occurred.

In addition to filtering, MotoHawk faults have some different behaviors. A Fault
can be:
e Disabled. It will not signal a fault even if the X out of Y condition is
satisfied.

e Sticky. Once set it will remain set until the next power down or until
it is explicitly cleared. This setting is handy for detecting transient
or intermittent faults that may appear and disappear before they
can be observed in MotoTune.

e Persistent. A fault that acts like the “Sticky” fault, in that it will
remain set once the fault conditions occur. But it will remain set
across a power cycle. A persistent fault once set will remain set
until it is explicitly cleared.

Fault Actions can be initiated by one or more faults. Any given fault can drive up
to four fault actions based on various states of the fault (i.e. Suspected or Active).
The fault action block will report a high Boolean signal when any of the
associated faults are set. The application designer is then responsible to define
the proper system response.

Woodward 35

MotoHawk Resource Guide Manual 36333A
Fault Blocks

MotoHawk provides several blocks to define and interact with faults within your
system. These are located in the MotoHawk Library under Fault Management.

Fault Manager

This block can exist anywhere in your model. You will need only one for the
model. The storage for the fault manager allows you to control where the fault
calibration is stored.

If set to FLASH — the faults can only be calibrated on a development module or
offline.

If set to EEPROM — the calibration can be adjusted on any module.

The access level refers to the security level required of the MotoTune user to
perform the action.

The MotoTune group string controls where the Fault calibration will be shown in
the MotoTune Calibration Tree.

MotoHawk MotoHawk (RTW)
Fault Management Blocks Fault Manager Definition

Copyight 2004 Mok Tmn, Inc. M Fighis Fssnved Storage:FLASH
Read Access: 1

functionallty to manage bit-packed fault data structure, Write Access: 1
toview andclsar the status of faults from MotoTune, Clear Access: 1

andtocanfigure actions to be associted w it anmy faulk.
[

Global Manager Definition

Bl Paramet ees: oomst oliawk_Taoll ey L]
~ MotoHawk Faul Manager [mask] (irk]
This binck defines the Fauk Manager, and must edst once in each model
that contans Faull blocks

Cods is genested to cache the faulls in & memorp-efficient manne:, and
An miedace i genarsted n MoloT ure lo deolay and configure the faulls

Itis el legal to wre Faul blocks wathout the Faull M ansger, but without
iicica o thes defiriion block. it has the effect of iemoving af Faull funchonally.

Fault Faull Faul Satss Faulth

b PS5 6150] Enabled) A] Cogyright 2005 MatoTron, Inc. Al Rights Ressrved

~ Paameters
L Stoeags

Sad Faul Faulll FaultRabims
At

]

{ CmarFault Faut! —_— Hmnmmu[i
Wte Access Level 1|
Action Clear Access Level [1

FautAdon MFautdon 3 rm'“wsm
Fauly

Led Led Ly

Clear Faults

5 ok] Cocel | Hep focd I
Mgyt b FT
Daar MiF aus

36 Woodward

Manual 36333A MotoHawk Resource Guide

Fault Definition

This block defines a fault in your system. Faults must have unique names
throughout the system.

Fault: Fault1
[25 of 50] (Enabled)

W

E! Sink Block Parameters: motohawk_fault_def

!

Copyright 2010 Woodward, &l Rights Reserved,

Parameters

Faul: Name

'Faultt’ |

Mode |Enal:-led v|

(u]

u |
Faulty Samples ()

2 |

Tokal Samples ()
50 |

Input Suspected Status

[] allow Indeterminate Input (values ather than 0 ar 13
|pdate v values

Daownsample Count

1

s uploaded Mode [X) % values From MokaTune

Use uploaded Faulk Actions from MotoTune

------------ Shiow Fault Ackion Routing ------------
Aiction 1
i |
Action 1 Condition |{None) ~|
Action 2
' |
Action 2 Candition |{None) ~|
Action 3
' |
Action 3 Condition |{None) v|
Aiction 4
" |
Action 4 Condition |Suspected |
b
o J[concel [tep [apety |

Woodward 37

MotoHawk Resource Guide

Manual 36333A

Set Fault & Clear Fault

These blocks will set or clear a fault that has been defined elsewhere.

The application is responsible for coordinating when these blocks run— there is
no coordination done by the Fault Manager.

» Sel Fault: Fault1

» Clear Faull: Fault1

E Sink Block Parameters: motohawk_fault_set
MokoHawk Fault Set (mask) (link)

This MaotoHawk block sets the Suspected state of a Faulk, defined elsewhere (using
a Faulk Definition block), either by name, or using a Fault_T input reference.,

Copyright 2010 Woodward, all Rights Reserved,
Farameters

Fault Source

Fault Mame

[Faule1’

[] allows Indeterminate Input (values ather than 0 or 1)
Update %/ Yalues

Downsample Count

1

(a4 l[Cancel]’ Help Apply

E! Sink Block Parameters: motohawk_single Fault_clear
MaktoHawk Clear Fault (rmask) (link)

This block clears a single Fault, either by name, or using a Fault_T input reference,

I the 'clear’ input signal is true, the Fault will be cleared, otherwise, it is nok
modified.

Copyright 2010 Woodward, Al Rights Reserved.

Parameters

Fault Source |Lookup By Marne vl

Fault Mame

Faultl’ |

i H Zancel H Help apphy

38

Woodward

Manual 36333A MotoHawk Resource Guide
Fault Status

These blocks allow you to read the status of a single fault or a group of faults.

When reading multiple statuses, the output will be a vector of Boolean values
corresponding to the fault list.

Fault Status: Fault1 Al
Active

Fault Statuses: i
Active

_—

E! Source Block Parameters: motohawk_fault_status El
MakoHawk Fault Skatus (mask) (ink)

This block retrieves the current Fault Skatus, either by name, or
using a Faulk_T input reference,

The output may be one of the states Suspected, Active, or
Ciocurred, or all three,

Copyright 2010 Woodward, Al Rights Reserved.

Parameters

Faulk Source |Lookup By Name Vl
Fault Marne

"Fault1' |
Fault Status |.0.ctive vl

[QK H Cancel][Help]

E! Source Block Parameters: motohawk_fault_statuzes E]
MaoktoHawk Fault Statuses fmask) (link)

Motohaw k_g et_fau Its(system) This block retrieves the current Fault Statuses by name for a list of

. = . . Faulks,
This is a utility function that will
retrieve all of the faults located & helper function, maotohawk_get_faulks(sys), will get all of the Faulks
in the system and its children. in the model sy=.
. U,se bdroot to find all fau!ts The output may be one of the states Suspected, Active, or
within the model. The fault list Occurred, or ll three,
returned by this function will be
alphabetized.

Copyright 2010 Woodward. All Rights Reserved,

Fault Mames (Cell array)
motohawk_get_Faults(bdroot) / |

~
Fault 53 ' |

Woodward 39

MotoHawk Resource Guide Manual 36333A
Clear All Faults

This block, when triggered will clear all of the faults. If the fault conditions still
exist, once the X of Y filters are satisfied, the faults will re-activate.

b

MotoHawk (RTW)

Clear All Faults

Fault Action

This block defines a fault action. The fault action name must be unique within a
model. The action will become active when a fault is routed to it either via the
design or via calibration. The application designer then needs to create the code
that will execute when the fault action is active.

Fault Action: MyFaultAction b

E! Source Block Parameters: motohawk_Fault_action
MakoHawk, Fault Action {mask) (link)

This block defines a Faulk Action, which can have any number of Faults routed to
it, This routing can be initially configured at design-time, using the Fault Cefinition
blacks, and can be modified From MatoTune using the Faulk Manager calibration,

Each Fault Definition can be mapped ko up to four Fault Actions, There is no limit
to the number of Faults which can map to any given Fault Action.

The output signal is true if any of the routed Faulks have their Fault Action
Condition met, which is some combination of the Suspected, Active, or Occurred
status of the Faulk,

Copyright 2010 Woodward, all Rights Reserved,

Parameters

Action Mame

My Faultaction'

Cwkput Action Skatus

(0] 4 H Cancel H Help

40 Woodward

Manual 36333A

MotoHawk Resource Guide

Fault Blocks Example

PROPRIETARY
AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
ORAWING)5 THE SOLE PROPERTY OF
WOODWARD. ANY REFPRODUCTION 1N

Mot otHgu kK

Woodward

1000 Egst Drake Road, Fort Collins, GO, 80529
o woodwad com (586) S50

Description

My1stProject

PART OR AS A WHOLE WITHOUT THE

WRITTEN PERMISSION OF WOODWARD Fareground

15 pROMIEITED) 2000

Path: hy1 stProject|Foreground REV: 000
@ SCIL4 totaH vk (R T
T o Code Cowerage Test Bit
Mt H 2wk (R T

Fault Manager Definition

Storage: FLASH
Y Data Type: uints
Read Access: 1
rite Access: 1
Clear Agcess: 1

Calibration Blocks

Fault Definition Blods

Fault Status Blocks

Frobe Blodks

Fault Status: Fault1
Active

A Fault1_Status

Fault Status: Fault2
Active

A Faultz_Status

Faults_Status

=

A Faultd_Status

All_Fault_Statuses

Action]

I
m i

ActionZ

SetFaulti =0 - Fault: Fault1
(Displayi Ll [25 of 50] (Enabled) Fault Status: Faults
(2 2 Active
=
Se‘;f’”‘lfz S > . Ff";g: F;”'le ; Fault Status: Faultd
= (Display) L [25 of 50] (Enabled) L i
SetFaultz =0 - Fault: Fault2
. - Fault Statuses:
L (Display) L [25 of 50] (Enabled) b i
2:Faultz
3:Faults
SetFaultd =0 - Fault: Fault4 <: Fault4
L (Display) Ll [25 of 50] (Enabled) 5: Faults
2 2 Fuotive
SetFaulti =0 - Fault: Faultd X
L (Dizplay) UL [250f50] (Enabled) Fault Action Blo s
Fault Action: Action1
7L
Fault Status - Setto Suspected Probe Fault Action: Actionz
. 7
[P i s [P B Fault?_StatusSuspectad
L Suspected 7

Fault Action: Action3

Action3

mi

Fault Block Exercise Steps

o > w N e

Create the model as shown.
Build the model.
Run MotoTune, program the module, and open a display or open the

FaultExample.dis file.

Start with motohawk_project(‘Faultl.”)

Remove the existing contents of the Foreground subsystem

6. Notice in MotoTune display explorer, there is a category for Faults that
contains the display variables for:

Active Faults
Occurred Faults
Suspected Faults

Fault Command (to clear faults

Also, for every Action there is a reason display variable that will tell you

all of the faults that are causing the particular action.

Woodward

41

MotoHawk Resource Guide

Manual 36333A

All of the displays are marquee type displays that will roll through the
faults and display the fault names.

8. Openitup.

Open a calibration and notice the Faults category in the Calibration
Explorer. The Fault Manager is located here.

The fault manager contains fields that can be set in the Simulink Fault
Definition Block. They are found here and can be adjusted at run time.

There is also an extra field, “Test,” that will allow you to force the fault

active without the input conditions being set.

Note how the calibration has been adjusted to route some of the faults to
particular actions.

B MotoTune [Erie Holloway] « Fault1_000_000. cal
& € .- i P .- L] [
:: :‘";1 ActiveFaults Fault1 Action1_Rrason
= £ Action Reasens " |OccurredFaults Fault2 Actlen_Reason &
At 2 ' |SuspectedFaults (Mone) Action3_Reazon (Mone)
. [Actons_Ramen * [FauCommand Waiting for Command
Display |y acmerae T | setFault] 0 FaulMStatus Active
Variables ar ar ©|setFaulz 0 Fault2Status Faul2Suspected |
L SetFaultd il Fault3Status
© | setFaud] Faultd Status
" |ClearFaultd [JalFauliStatuses 0 1 i 3
e (i] Adtive - -
o0 st le
Action 1 Conditlon
(M)
| Galibr otion Explore -] [Heanm)
= == Fault 1_000_000.cal on [PEM-1] - [Means) na)
FaUIt =3 Pty e { e ne)
Manager % Arasuns
& o Synte Cornacted (POM-1]
Faults /
Category Faults routed to particular actions
42 Woodward

Manual 36333A MotoHawk Resource Guide

Chapter 3.
CAN

Introduction

The CAN standard was developed to facilitate the communication of data
between devices in a vehicle. CAN literally means Controller Area Network.

The current standard for CAN is CAN 2.0B with which all Woodward MotoHawk
controllers are compatible. Most of our modules have at least one CAN port,
while a few have as many as three.

Sending and receiving messages via a CAN port is incredibly simple. It is far
easier to send or receive a message via CAN than it is a RS232. However, there
are a couple of issues that can make it seem daunting — especially when talking
about CAN protocols like J1939 or SmartCraft.

CAN Bus Basics

First, a CAN bus requires at least two participants in order to be a bus. The
physical connection between devices is a 2 wire cable. The wires are often
labeled CAN-H and CAN-L. There must be a 120 ohm resistor between CAN-H
and CAN-L somewhere on the bus called a terminator. The terminator resistor
can be placed physically anywhere in the bus, but ideally is located at one end or
the other. You can have more than one terminator, but remember that too many
cause the bus to stop working.

CAN bits are transmitted across the bus as either dominant or recessive.
This means that a dominant bit (a 0) will win over a recessive bit (a 1). All of the
transceivers on the bus must be operating at the same bit rate (aka the baud
rate.) All of the transceivers on the bus synchronize to one another by detecting
the edges between 1s and 0s. Luckily, the transceivers do much of the hard work
of transmitting and receiving messages. The software needs only load messages
to be sent and react to incoming messages. The transceivers make sure that a
message gets out on the bus if possible. Commonly, busses are operated at
250K baud but can run as fast as 1M baud. The length of the bus is directly
related to how fast you can run the bus. For reliable communications, the
maximum range at 250K baud is 100 feet; at 1M baud it is 30 feet.

All CAN messages are comprised of:

e AnID of either 11 bits (aka a standard ID) or 29 bits (aka an
extended ID),

e A Data Length Field saying how many payload bytes there are.
This number can be from 0 to 8, and a payload of 0 to 8 bytes.

Notice that the payload can change sizes. Yes, a perfectly valid message can
contain no payload at all. You might ask, why you would ever transmit a
message with no data? Usually to indicate that a module is alive by sending a
heartbeat to other modules in the system or to represent the occurrence of an
event.

Notice as well that IDs can be of two different types. Is it permissible to have both
types on the bus at the same time? Absolutely. The bus will perform just fine with
both types of IDs and variable length payloads running across it. Also, messages
with IDs of the same value but different type are considered totally different
messages.

Woodward 43

MotoHawk Resource Guide Manual 36333A

So, how are the inevitable bus collisions (times when two modules want to
transmit at the same time) handled in CAN? Very nicely.

Remember that all transceivers are synchronized. The two transmitting modules
will start clocking out their ID bits at the same time starting with the most
significant bit. As soon as the ID bits differ, the device that is transmitting the 0
wins the bus (because 0s are dominant) and continues clocking its bits out. The
device with the 1 in the ID bit, automatically detects that it lost the bus and stops
trying to transmit, and it will automatically wait until the next transmission slot to
try again.

So, this brings us to a couple of rules:

1. Lower ID values have higher priority on the bus
(and standard IDs are higher priority than extended IDs)

2. No two devices can transmit the same ID.

The first rule is fairly obvious. Os are dominant, so lower IDs will make it on the

bus first. The fact that standard IDs are higher priority than extended is caused

by the transmitting of a 1-in-1 of the early messaged header bits to indicate that
the following ID is extended.

The second rule is not as obvious, but will bite you. If two modules tried to send
the same ID at the same time, neither would know that it did not win the bus. The
failure would not occur until they had a different bit in the payload. Unfortunately,
each module will only be informed that its message failed a parity test (due to the
payload bits being clobbered). Each module will then dutifully retry to transmit.
Since they are synchronized, they will once again clobber each other. So, never,
ever have two modules potentially sending the same ID. Of course, never is a
strong word. And, you will see that some protocols actually will break this rule to
do address claiming — but more on that later.

Payloads

Recall that payloads can have between 0 and 8 bytes of data.

Those 8 bytes can mean anything you want them to mean. The CAN 2.0B
specification does not have an opinion about the contents of the payload. Of
course, choosing IDs and defining payload contents can be a daunting task. If
you own the entire bus design, you can simply choose IDs and data packing.
However, if you need to coordinate bus usage, then a protocol needs to be
chosen so that IDs are unique and multiple developers can interface to one
another. Luckily for you, there are plenty of protocols to choose from like J1939,
GMLan, SmartCraft, CANopen, etc. You can also run multiple protocols at the
same time across the bus — just make sure the IDs do not clash and there is
sufficient bandwidth and you are good to go.

How much data can a CAN bus transfer?
The maximum performance is about:

e 2000 messages per second at 250K Baud
(or 16000 bytes per second of payload.)

e 4000 messages per second at 500K Baud.
e 8000 messages per second at 1000K Baud.

Good network design requires that you plan for no greater than 70% bus
utilization or about 1400 messages per second at 250K. Protocols will often
require you to pace messages at a minimum interval between messages so that
the instantaneous message rate adheres to these limits. For instance, J1939
paces messages at 50 milliseconds for large data transfers. In other words, they
are limiting a block transfer to about 1% (1/0.05/2000) of the available bandwidth.

44 Woodward

Manual 36333A MotoHawk Resource Guide

Protocols

Protocols are where CAN gets thorny.

Because CAN has a limited number of ID bits and only 8 bytes of payload,
defining ways to transport all types of data can be difficult. Often times we hear
guestions like, “Do you support CAN?” The answer is, of course, yes. What they
are probably asking is, “Do you support [something like] J1939 running across
CAN?” The answer is maybe.

We usually consider protocols to be application specific. That is, the
application is responsible for implementing the protocol. MotoHawk, Control
Core, and the module hardware provide all the necessary infrastructure to
implement protocols, but it is rare for protocols to be implemented in these
layers. The exception to this is the reprogramming protocol for the module via
CAN. The boot loader needs to communicate with MotoTune to reprogram a
module. Since the application is not running during reprogramming, the boot
loader then becomes responsible for the reprogramming protocol.

Protocol Specifications

Most protocol specifications will define Message Definitions which include:
e ID (including whether it is extended or standard)
e Description of any of the meaning of any ID bits

e Description of any ID bits that are “don’t care,” commonly called the
mask

e Frequency of the message, or the event that will cause it to transmit
e Device responsible for transmitting the message

e Expected number of bytes in the payload

e Contents of the payload

e Size of each content item in bits

e Location of each content item in the payload

e Data type of each of the content items

e Byte packing order of each of the content items

e Translation of each content item into “real world” units

e If the protocol has states, then a list of all states and transitions

Unfortunately, 95% of all protocol specifications are incomplete because they
assume certain facts (like byte order) without specifying them. The missing
information is often the reason that you cannot connect your application to an
existing CAN network without problems.

Woodward 45

MotoHawk Resource Guide Manual 36333A

Examples of Protocols

e J1939. Recommended practice for a serial control and communications
vehicle network.

This is the network found on many heavy duty trucks. Communication is
defined for a very large number of devices like engines, transmissions,
dashes, anti-lock brakes, etc.

e NMEA2000. This is the protocol published for marine vessels. The
protocol is similar to J1939.

e SmartCraft. This is the drive-by-wire protocol on Mercury Marine
powered vessels.

e GMLan. This is the protocol running in your favorite Chevy.

e CCP. This is the CAN calibration protocol used by many controllers for
calibration and service tool interaction.

MotoHawk CAN Theory of Operation

MotoHawk provides several blocks to make interfacing to any CAN bus and
protocol relatively easy.

Transmitting Messages

When transmitting, all messages are transmitted via a single hardware buffer
(usually buffer 0) from a software queue. As the application executes, each
message that is to be transmitted is loaded into the software queue. The OS then
monitors the buffer and transmits messages from the queue as quickly as
possible. (Remember at 250K baud, it takes about 500 ns per message to
transmit if the bus is not otherwise busy.)

Two different forms of transmit blocks are available.

One will transmit a raw message — meaning a message with the ID and payload
computed by another part of the application. The other block will form the
message from individual signals being fed to the block and a message
specification. The latter block is generally used for broadcast, fixed content
messages. The former is generally used to handle protocols in which the payload
changes based on the state of the protocol.

Receiving Messages

The receiving of messages is conceptually simple, but terribly complex because
the CAN hardware does not provide much assistance. MotoHawk has abstracted
much of the complexity away by automatically generating a sophisticated
software message dispatcher. As you create message receive blocks, each block
will require a message ID and a message ID Mask that describe the message ID
that you want to receive. The ID mask is simply a description of which bits of the
ID must match in order for the message to be accepted.

For instance, if the Message ID is set to Ox7ff and the ID Mask is set to 0x7f0,
then all messages from 0x7f0, 0x7f1, through Ox7ff will be received by this block.

46 Woodward

Manual 36333A MotoHawk Resource Guide

At code generation time, the entire model is surveyed for all of the various IDs
and masks and a software dispatcher is generated to handle this combination.
The dispatcher will adjust the hardware to filter as many messages as possible
from the bus and then filter the rest in software so that only the desired
messages are passed up to the application.

Each CAN receive block can optionally provide a slot name that allows other
blocks to access and adjust the defined slot.

Receive Block Slots are Like Post Offices

The way to think about this mechanism is like a post office. Your slot is where
you expect to get mail (or messages) destined for you.

The mail sorter (or the software dispatcher) grabs all of the mail and sorts it into
various slots. Sometimes you may want to adjust the rules for your slot; maybe
you are going on vacation, so that the mailman changes what shows up in your
slot.

For MotoHawk CAN receive blocks, you can create a slot by name that can be
adjusted elsewhere in your application. In the previous example, we decided at
design time that we needed to receive all messages between 0x7f0 and 0x7ff.
But perhaps at run time some logic decides that you really only need to receive
0x7F1, because the module now knows what engine it is installed on.

There is a slot properties block that allows you to adjust the slot to tighten the
ID mask — so only message 0x7F1 shows up at the receive block.

In other words, the mailman will deliver all of the mail that you requested when
the code was built. But you have the ability to ask him to throw away some of the
messages prior to placing them in your slot.

There is also a slot trigger block that can be used to notify that a slot has
received a message via a function call trigger. In other words, the mailman will
ring your doorbell when he puts mail in your slot.

Just to make matters more interesting, you may want to censor some of your
mail so that only messages with certain contents are placed in your slot. Each of
the CAN receive blocks has the ability to filter based on the payload contents via
a payload value and a payload mask set of values. Like the ID, the payload
mask simply indicates which bits of the received payload must match the given
payload value.

For instance, say that you want to receive messages 0x7f1 whenever the first
byte of its payload is exactly 0x8f and when the last bit of the payload is set. The
payload value would be set to [0x8f 0x00 0x00 0x00 0x00 0x00 0x00 0x01] and
the payload mask would be set to [0xff 0x00 0x00 0x00 0x000x00 0x00 0x01.] In
other words, the first byte must match all 8 bits and the last bit must be set in
order for this message to be put into this particular slot.

So now, the mailman reads our mail for us and obeys our content requirements
before shoving the mail into the slot. As with IDs, the payload requirements can
be adjusted at run time via the slot properties block.

Like the transmit blocks, there are two flavors of receive blocks, one for raw
messages and one that will unpack the payload and the ID into their respective
data fields, providing them as signals to the rest of the application.

Woodward 47

MotoHawk Resource Guide

Manual 36333A

Using CANKing to Observe the Bus

Your MotoHawk kit included an interface for your PC that allows the PC to
communicate to two CAN ports via the USB interface. These devices are made
by Kvaser (www.kvaser.com.)

Kvaser publishes a free CAN

tool called CANKing that will allow you to observe

the bus and even send messages. Download this tool from the MotoHawk web
site (www.motohawk.info.) You will need this tool routinely.

Initially running CANKing, you will get dire warnings about safety the first time
you run the program. Acknowledge their warning and check the box to prevent

the warning in the future.

CANKIing will launch with the following window.

canvea e s x -

Crmale o P Pyujoul Usig
B
& [emplate

[;]f-

ST

@ ™ gy Esiting Frogect

=] e ‘. - ¢ =
L
i) e o S
2 v | ' | 1w |
P s L
Pt M
banghan

Thia cubchint wiry &
bt ..
Prides

1. Choose “Template” to start a new project.

2. Choose “CAN Kingdom Basic” from the templates dialog.

You will then have several windows scattered about your desktop.First,
look at the “CAN Controller” window.

3. Choose the “Bus Parameters” tab. Choose the channel that you want
(Channel 0 is the typical choice for the MotoHawk kits.) Set the Bus

speed to 250 Kbits/s.

Bus Statistics Bus Parsmeters | Hjw Fiters |
CAN Channek [USBcan 11 #0 (Channel 0) |
™ Exclesive
Busspeed: [N <] Kowis
sanpingpore: 5w) I
S E Suggest...
Diviver Mode: Emmd 'I
o ipoly | !.wotclmkl

IMPORTANT

Uncheck the Exclusive box or MotoTune will not be able to
communicate to the module while CANKing is running.
Unfortunately, this setting is not saved in the CANKing project file
so you will need to browse to this window and uncheck the
Exclusive box each time you run the program — even if you
reopen a saved project rather than start again from a Template.

48

Woodward

Manual 36333A MotoHawk Resource Guide

4. Switch to the “Bus Statistics” Tab and press the “Go On Bus”button.

e

Bus Statistics | bus Farameters | HW Fiters |

[Dus Load
o
Total Per Second) Overmun
RXmessages: 0O 0
T messages: O o .
Error Frames: 0 0 fqﬂ'l

Bus P ametens
Channel: Virtual #0 (Channel 0)
Settings: 250,000 kbk/s
| Bit timing: OmB, Sl=f, S2u2, SPe7S5. 0%, STWel

If there is traffic on the bus, the “Bus Load” bar will give you an idea of
how much bandwidth is being consumed. If the “Error Passive” indicator
illuminates, there are 3 possible reasons:
e No bus terminator
e Incorrect BAUD rate
e No other modules on the bus (because the modules are not
operating or there is a wiring problem).

Just because there is a green light for “On Bus” does not mean that the
bus is actually connected properly. An “Error Passive” will not occur until
a message is sent from CANKing which cannot reach a receiver, or a
bad message is received. If nothing is received and nothing is sent, then
CANKIing stays in the “On Bus” state, which can be confusing.

5. Open the Messages menu and select the Universal page to get a
window that will allow you to test transmission of messages.

6. Transmit anything and you will either see the state “Error Passive” or the
message will appear in the “Output Window.”

7. To display the messages in a useful form, find the “Select Formatters”
window, select the “Standard Text Format” in the “Active Formatters in
Order of Execution” list, and press the “Options” button.

= |

Avadable Formatters;

Standard Text Format -

Interpret King's Pages + |
Simple Alarm

Pass Filter :j =

Active Formatters in Order of Execution:

4 L = x
s Drowin Ciptions Remove
Formats CAN messages as bext,

Woodward 49

MotoHawk Resource Guide

Manual 36333A

The window “Text Formatter Options” will appear.

Text Formatter Options]

~Numeric Base——
" Octal
 Decimal
5 oo
" Use Default

W oK

XCanccll

8. Choose the setting shown.

These settings will cause the data to be displayed as shown.

A Dutput Window

Ident Flg Len DO..

o7rr
a7¥F
O7FF
a7FF
a7FF
O7FF
aTrr
o7FrF
O7FF
o7Fr
Q7FF
Q7FF
07FF
o7y
O7FF
a7FF
O7FF

4]

00 o
o0 oL
00 oL
00 ol
00 ol
o0 ol
o0 ol
00 ol
00 01
00 m
o0 ol
00 0l
00 oL
00 oL
o0 o1
oo oL
00 oL

oz
oz
oz
oz
oz
oz
oz
o0z
174
oz
oz
o2
0z
0z
oz
0z
oz

02
03
03
03
03
o3
o3
03
03
03
a3
03
o3
03
a3
o3
03

D4
04
04
o4
o4
04
04
0%
0%
o4
04
o4
o4
04
04
04
04

s
os
o5
s
os
os
o5
o5
o5
[
o5
(113
o5
os
os
o5
os

aocboaaouaaaaoobaE

.018
<018
.018
-018
.015

-018
.018
+OLS
.18
018

018
-D1E
018
.018

D18

L

ols

018

LB B R R R R EEEE B B -B_B-B_B_

lele L

A handy option in the “Output Window” is available via the right-click
mouse button. This will fix the positions of the messages into lines of the
display rather than showing the bus trace.

50

Woodward

Manual 36333A

MotoHawk Resource Guide

Basic CAN Blocks

MotoHawk provides a number of different CAN blocks that you will need to use
for different circumstances. The most important block is the CAN definition
block that will set up a channel’'s BAUD rate, configure the transmit queue size,
and allow the installation of the MotoTune protocol. This block must exist in order
for any CAN transmission or reception to take place.

The next two basic blocks are the “CAN Send Raw” and the “CAN Receive Raw”
blocks. These blocks simply transmit or receive messages without any payload

manipulation.

Hame :

Bus:

Bit Timdmug:
TX Queue:
BX Queue:

MotoTurne
City ID:

MotoHawk CAN Definition

CaN_1

NONE

250 kbaud
16 messages
16 messages

Protocol Enabled
0x0E (PCH-1)

——
CAN Channel Definition

This block can exist anywhere in your model. You will need one for each CAN

channel.

e Bit Timing sets the bus speed or baud rate.
e Transmit Queue Size defines the size of the transmit queue.

MotaHawk CAMN Definition (mask) (link)

CAN Resource selects which bus to initialize,

be used ko setup the CAM baud rate.

- Prescaler
- Propagation Segment
- Phase Segment 1 and Phase Segment 2

Copyright 2010 woodward, All Rights Reserved.
Parameters

Name

CAN_L

Resource |Hone)

Eit Timing | 250 kbaud
Transmit QueLe Size

16

Receive Queue Size

16
Install MotoTune Pratocol
City 1D

hex2dec('B")

ity ID Access Level |4
MatoTune Group String

‘Syskem | Systemn Config | Communication Config'

Bit Timing allows a preset baud rate to be selected, of lets user-defined attributes

If & user-defined baud rate is selected, the following fields may be filled in:

- Resynchronization Jump Width\nThese are specific bo the CAN hardware

E! Block Parameters: CAN Definition EJ

NOTE: If you set your
Resource to None, you will
not be able to communicate
with your module and will
need to use a boot key or
boot harness to recover the
module.

If you are changing the Target
in the Target Definition Block,

v you may need to redefine the

v CAN resource.

l QK H Cancel H Help

] Apply

MotoTune can be automatically installed along with defining the City ID and

calibration detalils for the City ID.

Woodward

51

MotoHawk Resource Guide Manual 36333A

The City ID is a MotoTune protocol value that essentially identifies the device.
City ID 11 (0xOb) is the default for all of our modules. City ID 2 (0x02) is the ID for
MotoTune. If you monitor the CAN bus while MotoTune is active, you will see
extended message IDSs like 0x00000b02 and 0x0000020b. The MotoTune
Protocol uses a scheme where messages are transmitted with IDs of the form
0x0000DDSS where DD is the Destination City ID and SS is the Source City ID.
You can simultaneously connect MotoTune to several modules. Each module
must have a different City ID.

CAN Transmit Raw

This block can have multiple instances within your model. The bus that you want
to transmit on and the interval of transmission are defined. The inputs to the
block are the ID and its type, the length of the data to send and the data itself.

ID Type ([std=0, ext=1], boal)
MotoHawk Send CAN Raw

I (11-bit or 29-bit, uint32) R
Interwval: Asynchronous

(transmits when block executes)
Length ([0-8], uint3)

‘ [rata o2 btes. uinta)

Data (0-8 bytes uint8): This block is designed to take a vector on the Data port of
any size of up to 8 bytes. If you feed the port with a vector of only 3 bytes, but set
the Length port to be 8, then the block will pad the extra bytes with the value 0.

m Sink Block PRarameters: Send CAN Raw E]
MokoHawk Send Cal Raw (mask) (link)

Transmits a raw CAN message onto the given CAN bus name.

Copyright 2010 Woodward, Al Rights Reserved.

Parameters

[OF H Cancel][Help] Apply

Periodic Interval [ms]: If this value is set to -1, then the message will be sent
every time this block is executed. If the value is set to a positive value, then the
block will attempt to transmit the message at the requested rate. However, this
check is only done whenever the block is executed. So, if the block is running at
5 ms and the Periodic Interval is set to 12 ms, you will see the message on the
bus at a 15 ms period.

52 Woodward

Manual 36333A

MotoHawk Resource Guide

CA

N Receive Raw

This block can have multiple instances in a model. If the slot name is defined, it

must be unique.

The parameters define the CAN

bus, message ID, ID mask, Payload and

Payload Mask, along with the receive queue size and the slot name. A data

available port (1 whenever
the queue has any
messages) and an Age
Count port (increments
whenever a message is not
available and resets when a
message is available) are
also present.

Masks

Masks define which bits must
match. A bit value of 1 within a
mask means that the
corresponding bit in the ID or

payload must match the incoming

message to be received by this
block. A bit value of 0 in a mask
positions means that you do not
care what value is in that positio

Data Awailable
MotoHawk Read CAN Raw
Name: CAN 1
Slot: Slotl
Queuwe Size: 0
ID Type: Standard
ID: 0x701
ID Mask: 0Ox7FF

Age Count

ID Type ([std=0, ext="1], baool)

1D (uint32)

Length ([0-2], uintg)

Data (0-8 bytes, wint2)
e ——|

E! Source Block Parameters: Head CAM Baw E]

Show Age Count Port: This port will increment every time the
block executes and no messages are available. The date from
this pork can be used to do timeout logic on a message.

Copyright 2010 Woodward. all Rights Reserved.

Parameters
Marme
AN _1
ID Type [0=Standard, 1=Extended]
o
n. jin}
hexzdec('701"
10 Mask
hex2dec FFFFFEFF")
Payload Yalue
]
Pavyload Mask
]
Queue Size
o
Slot Mame {may be empty)
'Slat1'
Show Data Available Port
Shaow Age Count Pork

QK H Cancel H Help

Woodward

53

MotoHawk Resource Guide Manual 36333A

Slot Properties

This block can have multiple instances in a model.

MotoHawk CAN Receive
Slot Properties

1D Walue Luint3z21

Slot: DRxZlotMame
Filter ID

D M asic (uintaz)

N

E! Sink Block Parameters: CAN Receive Slot Properties
MokoHawk CaM Receive Slak Properties {mask) (link)

Adjust a CAN receive slot properties at run time,
The SlOF name Is L:ISEd to matCh to the SlOt Slaok Mame: The name of the slot to adjust which should
defined in the receive block. The choice of match a slat name defined in a Receive block,
adjusting ether the ID filter or the Payload

i 1 Use ID Filker: Adjust the value of the ID used to filker the messages,
filter is set here.

Use Pavioad Filker: Adjust the value of the Payload used to filker the message.

Remember that slots can only be

tightened, so only mask bits that were Copyright 2010 Wandward, Al Rights Reserved,
0in the corresponding receive block =
can now be set to 1.
(l Slot Mame
Usually, this block is placed in a triggered
subsystem, so that the slot properties are lUste 10 iy
adjusted only on some conditions — such [Use Payload Filker

as at startup or on change of some state.

[o]'4 H Cancel H Help Apply

54 Woodward

Manual 36333A MotoHawk Resource Guide

Slot Receive Trigger

This block provides a function call trigger whenever the specified slot receives a
message. This trigger is high priority and will interrupt any other executing
periodic task.

MotoHawk CAN Receive E! Source Block Parameters: CAN Receive Slot Trigoer EI
. MaokoHawk CAN Feceive SlokTrigger {mask) dink)
Slot Trigger
Triggers whenever a CAM message is received on the given Slot,
Slot: RxRaw
J R, - .
1 Copyright 2010 Woodward. Al Rights Reserved,
l Paramekers
f” Slak
‘RexSlotMarne’

Allow placement of trigger inside another triggered subsystem

Triggered
Subsystem
[u]'4] [Cancel] l Help
PROPRIETARY
b comne MototHauk Woodward
e s o conranED s pho
e o S
oAt et o ot Mmoot
AT GRS AR AT T
WRITTEN PERUISSION OF WY 0ODWARD Foreground
otk il
Path: bty 15t Project EAN_H_FurE\]murkl REV:001

@ SCILY HoDHaw RTVY
)l com comg: Testan

otoHawk CAM Definition

Name: CAN_L

it iy 250 Set CAN resource to CAN1

TuD_Tyge = 1 1o e
- | 1D Type (Fi=D, ext= 1], boo EL —
L Tphp MotoHawk Send CAN Raw MotoHawk Read CAN Raw
Rx_Age_Conit
Hame: [AH L ¥
o= o | T —— et St Bl
L s T & o e H ey
S = . Cuene Sine:
N D Typer Gvandirs
Tt |aiot @a.um o] g WL T
sk 0
- Fayload Value: [0 # 0 # 0 4 0 0] gt B8 b
WAL IEROT) —wi0am papesig
L BE b PeyloadYesk: [0 8 0 0 0 0 01 e s s T 0=
Fo_swm- 2
L o
B LLID MotoHawk CAN Receive
Eeeen et —_— Slot Properties
(DEpBy
v matont
Fa_paga- poao000g Filter I and Paylond
L Obpiad (I8, Bhyes)
Fa_payter Mast- pO000000
| =k e

Start with motohawk_project Canl.
Remove the existing contents of the Foreground subsystem.

Create the model as shown using the Can Send/Receive Raw blocks
and Probes/Calibrations as block input and output.— Build the model.

Woodward

55

MotoHawk Resource Guide

Manual 36333A

4,

© N o u

9.

Note: If you leave the resource set to “none” in the CAN Definition Block,
you will not be able to communicate with the module and will need to
recover module with a boot-key.

Run MotoTune, program the module, and open a display.
Run CANKing.
Right-click on the CANKing output window and select “Fixed Positions”.

In your MotoTune display — change the formatting of RX_slotID,
RX_slotiDmask, RX_ID, and TX_ID to display hex.

Notice in CANKing that the message 0x6ff is being transmitted every
20 ms.

ldea Py b

SaMOEEE W |

I E F B W W W M
atra i

§ o

RIS T TR R T - L

EEl

L

seswi
EXE

i
=Se=t

In CanKing, transmit a message on address $7f0 with any data.

tneg 5
el 0
thez o
tne3 [0

You should see the data in your MotoTune display and the Rx_Age value should reset
and start counting from O.

Adjust the slot ID and mask as well as the payload values to see how the messages are
affected. :

In CANKing, a

value starting with
$, like $7F0, means
that the value is in =?m=mmﬂl
hexadecimal rather * LiForsground
than decimal. A sotmesk
_-Ril!_sbd’m 8 . L] e
Ending the ID value T
with an X, like Sy . . —
$7f0x, would mean e
make the ID PR
extended rather L e -
than standard. B calibeation =
pready

56

Woodward

Manual 36333A MotoHawk Resource Guide

10. The individual bytes of the payload may also be set using the $ notation
for hexadecimal.

11. DLC is the number of bytes to transmit in the payload.

Advanced CAN Blocks

Payload Bit Numbering

Critical to the definition of messages is the location of the least significant bit
within the possible payload positions.

MotoHawk defines the bhit numbering as shown below. This bit numbering is
different than most protocol specifications.

T EL T 0 3
T I T T 0 T YR T T 1 T T T T) I T TR P P T 1) T 0 0 T I O R 1 T} 7] T3 T i [T [aefsslonl of o¥ ol &l of o o

You ALWAYS specify the location using the LSB of the field, regardless of the
byte packing order.

You do NOT necessarily use the bit furthest to the right, which would be the
positions. MotoHawk defines the bit numbering as shown to the right. This bit
numbering is different than most protocol specifications.

Standard ID Bit Numbering

Like payloads, IDs can be packed or unpacked. For standard IDs, the bit number
is defined as shown below.

70 o] 8] 7] e 5] 4] 3] 2] 1] o

Extended ID Bit Numbering
For extended IDs, the bit numbering is defined as shown below.

28| 27] 26] 25] 24] 23] 22] 1] 20] 19] 18] a7] 16] 15] 14] 23] 12] 1] 10 o & 7] el & 4] 3] 2 1] o

The payloads contained within CAN messages often need to be packed or
unpacked into their constituents for use by the rest of the model. MotoHawk
provides a transmit and a receive block that incorporates the packing and
unpacking of data elements into the messages. Additionally for transmission of
messages, the block can pack multiple messages simultaneously and place them
onto the bus at a specified period for the message group, as well as an inter-
message pacing interval to conserve bus bandwidth.

Each of these blocks requires a message definition in order to properly pack
or unpack the data. The message definition is nothing more than a MATLAB
structure containing specific fields which we will cover below. In addition to
unpacking the payload, it is also possible to unpack the ID fields. This becomes
important for protocols, like J1939, where the bottom byte of the ID is the source
address of the module transmitting the message. As with the Can Read Raw
block, all of the ID mask and payload mask details still apply.

For transmitting CAN messages — setting the payload mask will cause the bits
that are set to precisely have the value set in the payload value, regardless of the

Woodward 57

MotoHawk Resource Guide

value of any fields that might be defined on those bits. This allows you to set fixed
elements of the payload to a value without needing to define fields for those values.

An m-file, motohawk_can_example, is provided with MotoHawk that defines
a proper Matlab structure for defining a MotoHawk CAN message. We
recommend copying this file and creating new CAN message definitions
using the supplied structure as a template.

Message Definition Structure

Motohawk_can_example.m contains the details of the structure format needed to

define a message.

.name name displayed on block (default: empty string):
.description brief text used to document (default: empty string)
message
.protocol name of the protocol used (default: empty string)
.module name of the source module (default: empty string)
.channel number of the source CAN channel (default: 1)
CAN ID Setup
.id may be either 11 or 29 bits (if undefined, uses .idinherit = 1)
. either ‘'STANDARD’ (11-bit) or ‘/EXTENDED’ (29-bit) (if
.idext) L o
undefined, uses .idinherit = 1)
. indicates which bits are relevant for a receive slot (default:
.idmask
OXfffffff)
Default 0. When set to 1, causes the message to use the ID of
.dinherit the previous message in a list of messages (only applies for
transmit messages)
bit fields within message ID, as described below. (optional).
.idcontent{} Describes individual fields within the ID. May be undefined or
empty, if no ID content is defined.
Transmit Interval, Message Size, and Contents
.interval period in milliseconds, or -1 if sent asynchronously (default: -1)

.payload_size

payload size may be from O to 8 bytes. (default: 8)
Transmit: exact number of bytes to send.
Receive: minimum number of bytes required.

payload_value

Just as an ID has a value and mask, so can the (optional)
payload. For receives, this will result in a software filter requiring
the bits set in the payload mask to be equal to those in the
payload value. For transmits, any bits set in the payload mask
will be hard-coded to be the corresponding bits of the payload
value, regardless of any payload fields that may overlap it. A
typical use of this feature is to identify a specific message by the
first byte of the payload. May be a vector of bytes or a hex string.

.payload_mask

Indicates which bits of the payload are relevant for a receive slot,
or which bits will be hardcoded for transmits. If the number of
bytes is less than the size of the payload, the unset bytes are
assumed to be 0, meaning do not care.

May be a vector of bytes or a hex string.

felds{}

Fields within message payload, as described below. (optional).

Describes individual fields within the payload. May be undefined
or empty if no payload fields are defined.

58

Woodward

Manual 36333A

Manual 36333A

MotoHawk Resource Guide

Structs in the .idcontent{} and .fields{} cell arrays may contain the following fields:

.name

name displayed on the block (default: empty string):

.units

units (of Simulink-model value) used

in mask display (default: empty string)

.Start_bit

indicates the least-significant bit of the field regardless of endian-
ness (required)

.bit_length

number of bits in the field may spill across bytes (required)

.byte_order

may be ‘BIG_ENDIAN’ or ‘LITTLE_ENDIAN'. (default:
‘BIG_ENDIAN’) (only ‘BIG_ENDIAN' is valid for .idcontent{}
fields)

.data_type

may be 'UNSIGNED’, ‘SIGNED’, ‘FLOAT32’, or ‘FLOAT64’
(default: 'UNSIGNED))

.scale

scale factor. Since the same message description (default: 1.0)
struct is used for both transmits and receives, the scale factor
should not be thought of as a gain. Instead, think of it as the
units of the signal in the payload on the CAN communication
wire such as 1/100 of a degree for a signed integer representing
degrees Kelvin where 1245 (in the payload on the CAN
communication wire) represents 12.45 degK (in Simulink model
units). See equation below.

.offset

offset applied to the field in engineering units. (default: 0.0).

This is sometimes used to represent high-resolution values in a
range far from zero. To represent Simulink-model values from
230 to 270 Kelvin, a range of +/ - 20.47 degC with 0.01 degC
resolution is available using a signed 12-bit value in the payload
on the CAN communication wire with an offset of 250 Kelvin.
See equation and example below.

Woodward

59

MotoHawk Resource Guide

Manual 36333A

Advanced Example

Create a new model using motohawk_project(‘can2’)
Remove the existing contents of the Foreground subsystem
Create the model as shown using the default MotoHawk_CAN_example,

CAN Send/CAN Read blocks with Probes and/or Calibrations on CAN
block input/output. Build the model.

4. Run MotoTune, program the module, and open a display.

Run CANKing.

PROPRIETARY

AND CONFIDENTIAL

THE INFORIAA TION CONTAINED I THIS
DRAWING IS THE SOLE PROPERTY OF

WOODWARD. ANY REPRODU CTION N
PART OR A5 A WHOLE WITHOU T THE

ototHGuk Woodward

1000 EastDvake Road FortColing, C0, 80525

B10) 3560404

Tereription:
MystProject
Foreground

WRITTEN PERINSSION OF WOODW ARD
15 PROHIEITED. & 00m

P3th: bty 15tProject | Foreground

REW:001

SCIL4
L

5]

T

MotoHawk CAH Definition

:CaN_1
: CAN_1

£50 kbaud
16 meszages

Bit Timing:
TE (ueue:

BX Queus: 16 meszages

MotoTune Protocol Enabled
City ID: 0x0F [PCH-1)

WobHauk (RTIY)
ok Cow age Testhit

MotoHawk Send CAH Message

Wame: [aH_1
Protocol: ExamplePronorsl
Source Hodule: PrB-1
Interval: 100 ms (10 Ha)
ID: 0xDO0N00L£0 [STANDERD)
Hagk: 0=000007£0

RIR: 0

Nk 1D

ks
o (Dkpay

Hessage: DrampleMessage
Description:

Auerage Raclhs = G252 Fayload Jige: &

Dkpiy A e Raina

ID Comtents:

Wanme | Trits| LSE| Len|

Type| Byte Ordez|

Exanple message used as templase in MotoHack models

Gain| Offrat|

Hode ID| 1 o
Parlead Comtents:

Nome | Trits | LG | Len|

¢| UNSIGHED| EIG_EMDIAN|

Type| Byte Oxdez|

1.00

Gain| Offset|

n.on|

Tempe ratire - 250

Dkpin Tempe atire

44|
3|

1|
1|

Buverage Badius| nl
Tenperature] degk|

SIGNED| B1G_FHDIAH|
SIGNED| E1k_EMDIAN| 1/100.00| 50.08] &

AU

o] -0

MotoHawk Read CAN Message

Hame
Slot:
Protocel:

Zourae Hodule:

Interval:
Queme Time

a1
FirstHessageSlon

ExanpleProtaral
FoH-1
100 ms (10 Ha)
sl

m 0x00000LE0 [STANDARD)

Hask:
BIR: 0

Hessage:

Description:

OxdN000TED

Eix Message
Our Tizst Bx Message

Payload Sime: @

Payload Valne:

[0x0E G0d 0xB0 Dx00 0x08 D00 Hx00 0xdd]

Age Cont]

Nock 1D

Payload Hack [0xEE dudd D 0x00 0x0d Oxid GO0 Gxdd]
FeRi
ID Comtents:
Fame | Tndts| LSE| Len| Type| Byte Ozdez| Gadn| 0ffset
Hode ID| | 0 4 WHIIGHED| BIG_EMDIAMI L.od0| 0.0u0
Fayload Contents
FRr2
Hame | Thvits| LIE| Len| Typel Byrte Order| Gain| Offser

Firldl|

mfr] 48| 4| UNIIGHED| LITTLE_EWDIAN| 1.000]

LRI_SW—pm Mask aney
Rx_napuau_vz(g;;m | Payicad Vale (1B, Bbyes)
:Uamad,lla(‘n“;pba ayad Mask (1B, B byes)

MotoHawk CAH Receive

Slot:

TirstHessageslon
Filrer ID and Paylead

Slot Properties

.00

60

Woodward

Manual 36333A

MotoHawk Resource Guide

Expanded Image of Send CAN Message from Above:

MotoHawk Send CAN Message

N(%ﬂi'ja;f - hode 1D Wome: CAN 1

[Protocol: ExampleProtocol
Source Module: PCM-1
Interval: 100 m= (10 Hz)
ID: 0x000001f0 (STANDARD)
Mask: Ox000007f0
RTR: a
Message: ExampleMessage
Description:

AverageRadius = B2832

Payload Size: 8§
I Average Radivs

Example message used as template in MotoHawk models

L (Display)
ID Contents:
Hame| Unit=| LSB| Len] Typel Byte Orderx| Gain| 0ffset|
Node ID| | ol 4| UNSIGNED| BIG_ENDIAN| 1.001 0.001
Payload Contents:
Hame| Unit=| LSB| Len] Typel Byte Order| Gain| 0ffset|
TempeDr_atuIre:QQD | Termperature
L (Display) Average Radius| w| 44| 12| SIGHNED| BIG ENDIAN| 1/10.00] 0.00] -g
Temperature| degK| 32| 12| SIGNED| BEI¢ ENDIAN| 1/100.00| 250.00] 2
Expanded Image of Read CAN Message:
[Bl
MotoHawk Read CAN Message
n 1
Age Court fe-=
Hame: CAN_1 Y IMaCES o
§lot: FirstMessageslot
Protocol: ExampleProtocol
Source Module: PCM-1
Intervral: 100 ms (10 Hz)
Queue Size: 1
ID: 0x000001f0 (STANDARD)
Magk: Ox000007f0 I |
asks o Nade ID |== hode_ID
RTR: O il = o
Message: FRx Message
Description: Our First Rx Message
Payload Size: 8
Payload Walue: [Ox0Z Ox00 Ox00 Ox00 Ox00 Dx00 0x00 Ox00]
Payload Mask: [Oxff Ox00 Ox00 Ox00 Ox00 0x00 0x00 0x00]
r a
Field] p=-= Field1
IP Contents: 121 !
Hame| Units| LSB| Len]| Type| Byte Order| Gain| 0ffset
Hode ID| | 0] 4| UNSIGNED| BIG_ENDIAN| 1.000] 0.000
Payload Contents:
r a
. . Field2 p=-= Field2
Hame| Units| LSB| Len]| Type| Byte Order| Gain| 0ffset 171 !
Fieldl| mfs| 48| 24| UNSIGNED| LITTLE ENDIAN| 1.0001 0.000

e}

Woodward

61

MotoHawk Resource Guide Manual 36333A

6. Note the 1F3 message being transmitted. The 3 comes from the Node ID input.

& Output Window

nn T N TE T L Tims Dix
R 0G0 03 N7 FF 0O 00 00 09 0.003 B -
L oo 0.000 &
ODODEBOZ X = 08 oL 0.003 B
-
il |]

7. Transmit a message from CANKing and verify that the value is received by
the module as shown by the probe values in MotoTune.

Universal page - X
CAN Errvelope: El

s P [l
neg B~ wmes o
el i wes 1
ez B wmes B
ez B ez

-8

it
it
It
 § 1
it

62 Woodward

Manual 36333A MotoHawk Resource Guide

Chapter 4.

Memorz Management

Introduction

MotoHawk is designed to be an integrated rapid prototyping control system
solution out of the box. However, once a system starts growing into a larger
control system, memory management becomes increasingly more important.

In this section, we will discuss the basic memory layout of Woodward’s control
modules and discuss in detail the blocks that have the most impact on memory
usage and performance. Memory management of your MotoHawk control system
requires the understanding of vardecs (Variable Declarations).

There are three types of variables available in MotoHawk; Constant (Const,)
Non-Volatile, and Volatile Data.

Constant: is just that, constant, never changing data.

Non-Volatile data: can be changed and is saved between power cycles. Non-
Volatile data is predictable during and between power cycles because it will
always retain its last known value.

Volatile data: can be changed, but is not saved. After a power cycle it will return
to its original default value.

Knowing your memory
Woodward control modules include three types of storage devices.

Flash is read only memory and retains its information between key cycles.

Control Core, the MotoHawk application, and constant data are stored in the
flash region of the module.

EEPROM (Electrically Erasable Programmable Read Only Memory) is
similar to flash, in that it will retain its information across key cycles.

However, EEPROM can be erased and written to. This section of the module
becomes the most important when saving calibration changes and is responsible
for saving and recalling the non-volatile data in a model. Read and write to the
EEPROM as your control algorithm changes. We will discuss later when the
EEPROM is written to and how to ensure that you safe guard your data.

There are two different types of EEPROM, serial and parallel. Parallel EEPROM

is only available on a development module. This memory is what allows the user
to change non-volatile display and calibration variables in real-time during testing
and validation.

RAM (Random Access Memory) is only temporary memory space used for
volatile data.

The contents of RAM are erased between key cycles. Any changes made in
RAM will be lost once the module has been turned off.

Woodward 63

MotoHawk Resource Guide Manual 36333A

Flash is used to write information that cannot be accidentally overwritten. This is
why the program is stored in flash. If the program was stored in EEPROM, one
wrong memory write and you may have overwritten a vital part of the control
system.

Why so much different memory?

EEPROM is the work horse for memory management of your control system and
offers the best of both worlds. It is capable of storing information, but is also
capable of erasing and writing new information.

There is one drawback to EEPROM — any given memory location can only be
written to at most 100k times. So if you were saving a variable every 5ms, it
would not take long to reach the 100k cycle and possibly burn out that location of
the EEPROM.

To avoid this problem, the contents of the EEPROM are “shadowed” into RAM
when the module is turned on. Changing a variable that will be saved across a
key cycle is actually changed in the RAM copy and shadowed back in the

EEPROM at shutdown. Later you will learn how to save the Nonvolatile data
based on your own criteria.

Knowing the hardware

Woodward control modules come in two different versions.

The development version has an added parallel EEPROM region where
vardecs are stored.

This extra memory region allows the user to view and change calibration and
display variables using MotoTune and is typically used for testing and calibration.

A production module contains only the serial EEPROM.
No real-time calibrations can be performed with this module without explicitly
assigning the variable to be stored in the non-volatile region, which we will

discuss in the next section. In this way, the cost of production modules is kept
down relative to their development counterparts.

Familiarize yourself with the interface

MotoHawk has three basic blocks that allow viewable variables to appear in
MotoTune: calibrations, probes, and overrides. Before we discuss each individual
block in-depth, let’s look at the similarities you may find when looking at their
masks.

Mask parameters are accessed by double clicking on the block.

C(?;";EEQPOE)U >{ Probe \ >{ Override_Absolute }

64 Woodward

Manual 36333A MotoHawk Resource Guide

We will use a calibration block to illustrate the parameters. Drag a calibration
block into your model and double click on the block and a separate window wiill
appear listing that block’s mask parameters. Anything said about this block’s
mask parameters can be applied to any block with similar fields.

Calibrations

Calibrations can be described as a MotoTune accessible Simulink constant block.

Unlike Simulink constant blocks, the

MotoHawk Calibration block can only be Calibration = O
used once per declared vardec in the (Calibratien)
model. However, because a Calibration is

composed of a Data Storage block, you can motohawk_calibration
use a Data_Read block to access it in other
parts of the model.

0o B

Be careful — it is easy to drop calibrations all
over the model, but if you allow them all to Constant

be doubled, you may be wasting memory.

Probes

Probes are read-only displays stored in RAM. A MotoHawk probe is similar to
Simulink’s native display block and scope block. Probes can be very helpful
when testing and debugging, but if used carelessly, they can use more RAM than
necessary.

Probes will require extra memory when the wire it is placed on is not already being
kept around between execution cycles in the system, so if the control system
design requires the value of a particular wire to retain its value between cycles,
the value will be allocated memory space. Probing such a wire will not add any
further memory because the optimizer recognizes the two values to be the same
and they both reference the same memory location. However, if the signal is not
kept by the control system, then adding a probe will require more memory.

b Frobe

9

Display

|-

Scope

Overrides

Overrides are inline calibrations and have both an input and an output. There are
two different types of override blocks. Both blocks create two vardecs that can be
manipulated within the display window of MotoTune.

The override relative block is a way to lock the output and apply an offset. It was
designed around some legacy software and is typically not a block that a control
system will use.

The override absolute enables the MotoTune user to ignore the input and use a
specified value.

Woodward 65

MotoHawk Resource Guide Manual 36333A

Block Parameters

Name: This field can be any MATLAB expression (such as those in the
Motohawk_can_example.m file above) or a string, so that it can be called from
other MATLAB functions. If a string is used, make sure to enclose the string in
single quotes.

What are valid MATLAB expressions?

MATLAB expressions can be workspace variables or MATLAB functions that
return a number. Commonly, an m-script is made with calibration values stored
by name. This m-script is called and all the calibrations are loaded in the
workspace and the default values reference those values.

Default Value: This is the value that takes effect from the first time of
programming. It remains in effect until it is changed using MotoTune.

Behavior: This is where you decided what type of memory this variable will be
stored in.

e Calibration

0 Flash (prod)

o0 Parallel EEPROM (dev)
e Display — RAM
e Calibration NV — Serial EEPROM
e Display NV — Serial EEPROM

E! Source Block Parameters: motohawk_calibration
MokoHawk Calibration {mask) (link)

This block provides a connection From MotoTune that allows run-time modification of calibration
values with the MotaTune tool,

The black behaves in simulakion ke a Constant black, and accepts any Matlab value as its
Default Yalue, including data-typing casts,

If the value displayed on the block has an asterisk {*) next to it, this indicates that the value is
being overridden by a workspace calibration struct variable, called MODEL _cals, where MODEL
is the name of the model,

Wehen output values ko Simulink differ from the MotoTune inputs, due to gain, offset,
exponents, or enumeration choices, both values are shown.

Press Help for more information,

Copyright 2010 Woodward, Al Rights Reserved,

Parameters

Mame

‘Calibration!

Drefaul: Yalue

i

Behavior |Calibration £

66 Woodward

Manual 36333A

MotoHawk Resource Guide

Show Additional Parameters: Click the check box to show a list of additional

parameters to modify for this block.

Name Source: “Use Parameter” is the
default for this field, which requires the
name field above to be entered. Other
choices include “Use Output Wire
Name”, or “Use Input Wire Name”. This
will gray out the “Name” field and
reference the wire name attached to the
block.

For a calibration, if you select “Use
Output Wire Name”, then double click on
the wire attached to the output and
provide a name for the wire, update the
model, then the calibration block will
take the name provided for the wire.

Output Data Type: By default, MATLAB
makes all data types double. By not
making a selection or specifying it in the
“Default Value” field, then the output will
default to double. Otherwise, you have
two ways of specifying the data type.
You can leave this field to “Inherit” from
“Default Value” and enter the data type
along with the “Default Value” field. (For

E! Source Block Parameters: motohawk_calibration EJ
MotoHawk Calibration {mask) (link) A~

This black provides a connection From MakoTune that allows run-time modification of calibratior
values with the MotoTune tool,

The block behaves in simulation like a Constant block, and accepts any Matlab value as its
Default Yalue, including data-typing casts.

If the value displayed on the block has an asterisk (*) next ko it, this indicates that the value i
being averridden by a workspace calibration struct wariable, called MODEL_cals, where MODE]
is the name of the model.

YWhen output values ko Simulink differ from the MotoTune inputs, due ko gain, offset,
exponents, or enumeration choices, bath values are shown,

Press Help For more information.

Copyright 2010 Woodward. All Rights Reserved.

Parameters
Mame
‘Calibration’
Default Value

a

Behavior |Calibration ~

Mame Source |Use Parameter e
Qukput Data Type |Inherit From 'Default Value' e
Read Access Level |1 -

Wirike Access Level |1 ~

Lise uploaded calibration values from MotoTune
—

< >

[oK] [Cancel] [Help]

instance, unit 16(0)). This indicates that the default value will be a 16 bit unsigned integer
with the value of zero, or you can use the pull down selection of this field to explicitly
identify the output data type, such as uintl6. You can then leave the default value to be

just the number zero.

Access Levels: Access levels handle the security of the control system and relate to the
access level of the MotoTune security dongle, as well as the port access level specified on
the PC connecting to the control module. Access Levels range from a value of 1 thru 4. By
default, all the blocks that have access levels are set to “1.” Anyone with a MotoTune
security dongle with access level 1 or above may view and/or change this vardec.

Since 1 is the lowest access level, everyone has access to this vardec. However, if the
access level was set to a 2, and your MotoTune security dongle only had access level 1,
you would not have permission to view or change this vardec.

By default all MotoHawk kit dongles have access level number 4. Since level 4 is the
highest, those dongles have access to everything within the control system. Lower level

dongles are available from Woodward.

Woodward

67

MotoHawk Resource Guide

Manual 36333A

Show Additional Parameters (cont’d)

Use uploaded calibrations values from MotoTune:

This selection indicates if you want the source of this variable to be a separate

MATLARB file or if it may come from a different source.

The MotoHawk upload calibration feature will make
a MATLAB m-script for every defined vardec, but if
a vardec is generated from a separate piece of
software, you want your model to ignore the value
located in the m-script file. For example, if you
were constructing an autonomous vehicle that
included GPS coordinates and the coordinates are
generated from a mapping program, you would
deselect this option.

View Value As: MotoTune has been designed to
show data one of three different ways: number,
enumeration, or text.

If enumeration is selected, then the Enumeration
field may be used to specify the text associated
with the enumeration. What you see in MotoTune
will be the text in the Enumeration field (On/Off,
Start/Run/ Stop, etc.) instead of a number. Be
careful to make sure the enumeration text and
numbers align properly.

Enumeration (Cell String, or Struct):
Enumeration associated with the input when the
“View Value As” field is selected to Enumeration.

Show MotoTune Help and Units: Select to show
help text and units.

=] Souice Block Parameters: motohawk_calibration:
MotoHawk Calibration (mask) (link)

This black provides a connection from MotoTune that: allows run-time madification of calibration walues with the
MotoTune tool,

The black behaves in simulation liks & Constant block, and accepts any Matlab valus as its Default Yalue, indluding
data-typing casts.

I the value displayed on the block has an asterisk (%) next to it, this indicates that the value is being overridden by &
workspace calibration struct variable, called MODEL_cals, where MODEL s the name of the model.

When output values ko Simulink differ from the MatoTune inputs, dus to gain, offset, exponents, or endmeration
choices, both valuss are shown.

Press Help For more information.

Copyright 2010 Woodward. All Rights Reserved.
Faramsters

Mame

‘Calibr ation®
DeFaulk alug

0
Behavior | Calibration v
------------ Show Additional Parametsrs -----—------

Mame Source |Use Parameter -
Output Data Type [Inherlt From Dsfault Valus' v
Read Access Lavel || v
Wirite Accsss Level |1 v

[use uploaded calibration values from MotoTune

Wiew Value As Number £2

Enumeration {(Cell String, or Struct)

{Disabled’, 'Enabled’}

Show Vectors As | Wide Row v

o | [cedl | [ek

68

Woodward

Manual 36333A MotoHawk Resource Guide

Show Additional Parameters (cont’d)

Help Text and Units:

E Source Block Parameters: motohawk_calibration

Help Text: Text to aid the
MotoTune users what this vardec - Shot MotoTune Hep and Lits -~

does and what it might effect if i

Changed_ "MaximuanilDuratmn' |
Uniks

The text shows up automatically [ms |

with calibrations. The help text =Gl Eeein ==

and unlts automatlca”y dlsplay Row Header Enumeration (Cell String, or Skruct)

[|
Colurnn Header Enumeration (Cel String, o Struct)

For displays, right click on a o |
variable and select its properties [

to view the associated finan'ese

information including the help Lo |
text for that variable.

with calibration values.

Maimiurn Yalue

‘ inf |

-——- Show MotoTune Precision, Gain/Offset/Exponent --—-
Precision
Gain

1000 |

Offset
b |

Exponent
l |

-——- Show MotoTune Group -

MotoTune Group String

"Actuatuvs\Cu\\s|le Config' |

o) oo (o]

Notice the help text and unit information that is displayed next to the calibration. If
the vardec is specified as a display, you must right click on the value and go to
Properties/More to view its help and unit information.

Er MotaTane [eff

Woodward 69

MotoHawk Resource Guide Manual 36333A

Units: Indicates to the MotoTune users what units this vardec is specified in for
clarification during testing and calibration.

Show Min and Max Values: Select to show min and max values.

Minimum Value and Maximum Value: Minimum or Maximum Value for this
vardec. This will clamp the signal in MotoTune.

If an attempt is made to go below (above) this value, then MotoTune will display a

clamp value message and will force the value to this minimum (maximum) value.

This is useful to ensure a calibration is not accidently changed outside of a
specified range. This min and max takes into consideration any gain, offset, or
exponent that was applied to the value.

By default the minimum value is —infinity (-inf) to prevent MotoTune from clamping
the value if it is changed.

Warmrg ®
aar ol B g ke B
(b v 177 Iy o
hn"iltr-'- il nr *iCaral
B i “
W i ImE"
o i T i e
Fiada I P smewes el P agee Ba
R R TR FE el el 6 e
L= _J
o n it 1=

Show MotoTune Precision, Gain/Offset/Exponent: Select to show MotoTune
Precision information. The Precision, Gain, Offset, and exponent information is for
MotoTune use only.

This is not to be used to convert analog/digital counts (ADC) to engineering units.
These values are typically used to allow the designer of the system to use proper
system units, but display the value in more convenient units in MotoTune (ie.
English units, S| units).

70 Woodward

Manual 36333A MotoHawk Resource Guide

Show Additional Parameters

Show MotoTune Precision, Gain/Offset/Exponent (cont’d.):

Precision: Sets the default precision for the variable. The format is:
‘width.decimal’.

For instance, if you wanted the entire width of the variable to display 6 digits with
4 decimal places of precision, you would enter ‘6.4’. The width takes precedence,
so if your variable is six digits, there will be one decimal place applied. However,
if your variable becomes a seven digit number, then the precision would expand.

Gain, Offset, Exponent : These values only apply to how the variable will be
displayed in MotoTune.

These values are not to be used to apply a gain, offset, or exponent for ADC to
Engineering Unit conversion.

The equation is as follows :
MotoTuneValue = (value * gain)exponent + offset

This determines how MotoTune will organize the data within its messages and
how it will be displayed. So, if MotoTune were to display a value in 1000’s of
RPM, a 1 would appear in the cell in your display window for a value of
1000RPM.

Show MotoTune Group: Select this to specify the MotoTune group. This entry
allows customizing of the group structure in MotoTune.

Just like the Name field, this value can be an expression, which means it can be
a function call, just as the default value is. The default value
“motohawk_vardec_path(gcb)” returns the path structure of your model.

By default this value runs a function called motohawk_vardec_path(gchb,) thus the
location of each vardec will be the same as the model.

For instance, if you have a calibration in a model just under the foreground task
in a model named example, then by default the calibration will be located under
example/foreground/ calibration in MotoTune.

To specify your own directory structure, use the vertical bar (pipe) to separate the
paths. So, to put the calibration in a folder called calibrations under controller,
you would type: ‘controller | calibrations’ in the MotoTune group field. Remember
the single quotes. MotoTune’s directory structure consists of folders, pages, and
values.

Woodward 71

MotoHawk Resource Guide Manual 36333A

Data Storage Blocks

The MotoHawk Data Definition Block

olatile Data
hy D ata

double

The MotoHawk Data Definition Block defines data to be accessed via a
MotoHawk Data Read or Write block.

The 'Data Name' provides a globally unique name, accessible from anywhere in
the model. It is illegal to have duplicate names.

The data defined in the Data Definition block is accessed in the Read and Write
blocks by the Data Name

The initial value can be either a single value, a vector, or a matrix. For example,
setting the initial value to [1,2,3,4,5] defines a 5 element vector of data. Matlab
expressions (ex. zeros(1,50)) can also be used to define the initial value.

'Storage Class' identifies the behavior of the data on the target. Volatile data will
return to its 'Initial Value' on every startup. NonVolatile data will be saved in
EEPROM, and return to the last written value on startup.

Checking 'Attach a VarDec for visibility in MotoTune' will show similar parameters
as the Calibration block. If unchecked, the variable will not be available from
MotoTune.

E! Block Parameters: motochawk_data_def ®

varDecs For structures are not specified in this block, but can be specified with the "Create ~
Structure WarDec" block.

Copyright 2010 Woodward. All Rights Reserved.
Parameters
Data Name:
‘MyData’
Initial value
s
Data Type |double w
Storage Class | Yolatile »

[] cutput Data Reference

———————————— Attach a VarDec for Visibility from MotaTune --—-------
MotoTune Window | Display w
Read Access Level |1 -
‘Write Access Level |1 -
Wiew value A |Nurmber -
Show vectors As |Wide Row -
[] ---— show MatoTune Help and Units ------
[] --— Show Header Enumeration -—--
[] ---— show Min and Max Yalues —----
[] --— Show MatoTune Precision, Gain/OFfset/Exponent -—--—
[[] --—— show MatoTune Group ------
w
< >
[s]'4] [Cancel] [Help] [Apply

72 Woodward

Manual 36333A

MotoHawk Resource Guide

Global Data Read and Write Blocks

Data Read Data Write
My Data data data My Data
double douhle

MotoHawk Data Read Block

The MotoHawk Data Read Block reads a value from data defined by a
MotoHawk Data Definition block.

The 'Data Source' may be resolved by name, or by explicitly providing a dynamic
reference signal.

The Data Structure defines whether the input is a scalor, vector, or matrix as
defined in the Data Definition Block.

The data type must match the Data Type selected in the Data Definition block

The Data Name field appears if the Data Source is defined to be ‘Lookup By
Name’'. In this case, the name is set to match the Name field defined in the
corresponding Data Definition Block

MaotoHawk Data Read (mask) (ink)

Reads a value from data defined by a MotoHawk Data Definition block,

The 'Data Source’ may be resolved by name, or by explicitly providing a dynamic reference signal,

If "Struckure Mame" is selected, then the name of the structure instance must be specified along
with the name of the field. If "Structure Reference" is selected, then the field is selected and a
structure reference is provided as an input.

The 'Data Struckure' may be a Scalar, Vector, ar Matrix, IF Yector or Matrix is selecked, an option is
available to either output the entire data struckure as a wector or matrix signal, or to use zero-
based index inputs ta determine the appropriate ikem within a larger data struckure,

The selection for 'Data Structure’ and 'Data Type' must match the definition. An error is given if this
does not match when the data source is by name, However, if the source is by input reference, the
kool will not provide static error checking.

If "o operation when null reference is input' is checked, an explicit check for a null pointer will be
done, and zero will be output from the block. IF this is unchecked, null pointers will cause a crash on
the target. Mote that no type, bounds, or data structure checking is ever pravided on the targst,
Such issues will be caught by simulation, with explicit warnings.

Copyright 2010 Wwoodward. Al Rights Reserved.
Parameters

Data Source | Lookup By Mame L3

Lookup By Mame
Data Struckur| Input Reference Signal
Lookup By Mame in Structure
Data Type | di Lookup By Name in Structure vis Reference

Data Mame

‘MyDats'

[QK H Cancel][Help

E! Source Block Parameters: motohawk_data, read 3]

If Vector or Matrix is selected, the array can be read or written all at once, or by
specified index.

The indexing is zero based (indices range from
0 to size-1).

The selection for '‘Data Structure' and 'Data col

Type' must match the definition.

[rata Read
hiy L ata

daouble[rowv, cal]

data

Woodward

73

MotoHawk Resource Guide Manual 36333A
MotoHawk Data Write

The MotoHawk Data Write block writes a value to data defined by a MotoHawk
Data Definition block. The fields are similar to the Data Read Block.

The 'Data Source' may be resolved by name, or by explicitly providing a dynamic
reference signal.

The Data Structure defines whether the input is a scalor, vector, or matrix as
defined in the Data Definition Block.

The data type must match the Data Type selected in the Data Definition block.
The Data Name field appears if the Data Source is defined to be ‘Lookup By

Name.’ In this case, the name is set to match the Name field defined in the
corresponding Data Definition Block

E! Sink Block Parameters: motohawk _data_write
IMotaHawk Daka Write (mask) (link)

Writes a value to data defined by a MatoHawk Data Definition block,

The 'Data Source’ may be resolved by name, or by explicitly providing a dynamic reference signal,
IF "Structure Mame" is selected, then the name of the structure instance must be specified along
with the name of the Figld, If "Structure Reference” is selected, then the Field is selected and a
struckure reference is provided as an input,

The 'Diata Structure' may be a Scalar, Wector, or Matrix, IF Vector or Matrix is selected, an opkion is
available ko either output the entire data struckure as a vector or matrix signal, or ko use zero-
based index inputs ko determine the appropriate item within a larger data structure,

The selection For 'Daka Structure’ and 'Data Type' must match the definition, An errar is given if this
does nok match when the data source is by name, Howewer, if the source is by input reference, the
kool will nok provide static error checking,

If ‘Mo operation when null reference is input’ is checked, an explicit check For a null pointer will be
done, and zero will be output Fram the block. IF this is unchecked, null pointers will cause a crash on
the target. Mote that no bype, bounds, or data structure checking is ever provided on the target,
Such issues will be caught by simulation, with explicit warnings,

Copyright 2010 Woodward, All Rights Reserved,

Parameters

Data Source |Input Reference Signal w
Drata Structure | Veckar w
Operation |\Write entire data structure at once L
WVector Size

9

Data Type |double w

Mo operation when null reference is input

[] allov writes to read-onky data (This will not code-generate)

2] H Cancel ” Help ” Apply

74 Woodward

Manual 36333A MotoHawk Resource Guide

MotoHawk Lookup Tables

MotoHawkT able[14] MotoHawnkT able2 D3]

AN

The lookup table block performs 1-D or 2-D linear interpolation of input values
using the Breakpoint and Table Data. The table data will saturate at the
endpoints for inputs above or below the breakpoint data range.

The Name field is the Vardec used in MotoTune. The output is normally assigned
to be a display variable with this name.

Output Name is an optional name for the output of the table. If left blank, a
VarDec will be generated called Name. If non-empty, a downstream probe must
be provided called output name, which allows customization of the output VarDec
from MotoTune. An error will result if the VarDec does not exist.

The ‘Show Additional Parameters’ option can be checked to allow entry of
read/write access levels, to Enable/Disable to use or ignore uploaded values
from MotoTune, as well as set Breakpoint/Table Data maximum and minimum
values, and show MotoTune units and help.

See block help for additional details.

E! Function Block Parameters: motohawk table 2d
MotoHawk Lookup Table (2-0 fmask) (link)

This block behaves similarly to the native Simulink Look-Up Table {2-00 block,

Press Help For mote information.

Copyright 2010 Woaodward. All Rights Resarved.

Parameters

whTablezD' |

Rowy Breakpoint Mame {optional)

Column Breakpoint Mame {optional)

Row Breakpoint Data

[[0152] |

Column Breakpoaint Data

[[015253] |

Tahle Data

[[11 1213 14; 21 22 23 24; 31 32 33 34] |

oF H Cancel ” Help apply

Woodward 75

MotoHawk Resource Guide

Manual 36333A

MotoHawk 2-D Lookup Table Example

Build a simple MotoHawk 2-D lookup table with the following data:

e row breakpoint data is [1,2]
e column breakpoint data is [3,4]
e table data is [10,20; 30,40]

3134| 4
11101420
1712428 |34
2 (303440

hiotoHawkTableZD[2x2]

27.99]

1.7 '
3-4 E/

76

Woodward

Manual 36333A

MotoHawk Resource Guide

MotoHawk PreLookup and Interpolation

The MotoHawk Interpolation tables are actually constructed from two blocks, the
MotoHawk Prelookup and MotoHawk Interpolation Blocks. This can be seen by
right clicking on the MotoHawk Interpolation block and selecting “Look Under
Mask.” The MotoHawk Prelookup and Interpolation tables can be used to share
the prelookup (interpolation between two points on the axis) with multiple tables
of data. The output of the prelookup can only be connected to the input port of
the interpolation block.

As shown below, separate interpolation tables (which are set to zeros and can be
calibrated later in MotoTune) use the same prelookup.

¥

};prk‘

REM[1]

¥

!

i i

AFC[11]

¥

h 4

Spatedy[11:211]

¥

 SpamkDuration[11:11]
i

¥

SOI[11511]

f

¥

|

 InjDuration[11:11]
Ti

f

Recreate the first lookup table example, except this time with prelookup and

Interpolation:

Row_Lookup[2]

17 0= Interpolation2D[2x2]
g o') i
S Gy PR // . 27.99
P plci
il ORGP e
i o—_
P i Other2D[2x2
3.4 < ; S P i _____er__[x—]————
= l 27.79]
] »
P Ci
L
Woodward 77

MotoHawk Resource Guide Manual 36333A

Chapter 5.

Boot Kez Recoverz

Errors in configuration, logic and/or other programming made during program
development when programmed into a module (via .srz file), can cause a
persistent loss of CAN communications with the module under development. If
this happens, apply the boot key (or boot harness) to force the module into
reboot mode, reloading the module with functional program code (a known, valid
.srz file) in order to allow resumption of module communication. Follow the steps
listed in this section.

possibly hazardous results if applied.

Remove the ECU from direct control connections before

performing the reboot procedure, as outputs are set to
defaults or undefined states, with unpredictable and

NO TICE Remove other ECUs from CANbus for this procedure.

Refer to diagram below for connections.

SmarnCraft Junction Box / VBATT SmartCraft
Connectors. Connector Pins
Wires to ECU Fins .
=

>
L
GROLIND |

—_ E[D |G| n] T
MEY_SW o | Tal maling end

[-[=[c[-[~[=[-[=]>]

USBICAN
Cabils to PC

CAN1+ 1
CANY K

Use Boot Key and Reprogram the Module

1. Connect the module for programming via necessary cables, CAN
converter, etc.

2. Select a known, valid .srz file for programming.

With key off, disconnect battery power from module.

4. With module power off, initiate programming of the module using
MotoTune.

5. When the “Looking for an ECU” prompt appears in the dialog, reconnect
Battery, and then turn key on, to power up and “wake-up” ECU. The
module must “wake-up” (KEYSW on) with the boot key or cable
connections applied as described in order to initiate a reboot and to
absorb the selected program.

w

78 Woodward

Manual 36333A MotoHawk Resource Guide

Chapter 6.

MotoHawk Acronzms and Terms

TERM OR
ABBREV. MEANING NOTES
General Terms
CcC Control Core MotoHawk's Operating System
. MotoTune's Address ID
City-1D S
for communication port
Open Source Compiler that can be used with
GCC
MotoHawk
. . Production compiler for use with MotoHawk
s Greenhills Compiler supplied by Greenhills Corp.
MCS MotoHawk Control Product Line containing Modules, MotoHawk and
Solutions MotoTools Software, and related components
MH MotoHawk Model Based Software Tool
. A scaled down version of MotoTune for
MS MotoService . . S '
programming and calibration in the field
MT MotoTune A tool for programming and calibration of MCS
modules
Memory that is stored across key cycles, as
NV Non-Volatile memory opposed to Volatile memory which is not stored
across key cycles.
PWM Pulse Width Modulation Squaye Wave Signal that varies pulse width at a
certain frequency
RTI Real Time Interrupt Periodic rate for application code
Software from the Mathworks that is used along
RTW Real Time Workshop with MATLAB and Simulink for embedded code
generation
Target Language Mathwork's proprietary compiler, used by
TLC . . .
Compiler MotoHawk in code generation
vardec Variable Declaration T_erm is gene_rally ust_ed for items that can be
viewed or calibrated in MotoTune
File Extensions
dll windows dll file, created
’ by build
mdl Extension of a MotoHawk
’ Model file
Extension of the
.Srz programming file created
by the MH build

Woodward 79

MotoHawk Resource Guide

Manual 36333A

MotoHawk Acronyms and Terms (cont’d.)

TERM OR
ABBREV.

MEANING

NOTES

Licensing Terms

.acf

Activation File

A file that is returned from a license update
transaction containing license activation

dongle

Silver USB token
containing software
licensing

A silver token that a user purchases that contains
the license for MotoHawk, MotoTune, and/or
MotoService. The token is placed in the USB drive
of a computer to run the software.

Akf

Transaction File

A file that can be sent by the customer to update
MotoHawk license by email, rather than shipping a
new dongle

Some MH Rel

ated Industry Terms

CCP

CAN Communication
Protocol

Standard communication protocol used for
calibration and data acquisition from electronic
control units. Modules communicate with MotoTune
on a Woodward proprietary protocol, but can be
calibrated by industry standard tools such as INCA
with CCP.

HIL

Hardware in the Loop
testing

ISO15765/UDS

A standard protocol for communicating diagnostic
information with a scan tool. MotoHawk has an
1ISO15765/UDS blockset available for purchase
separately

J1939

A vehicle bus standard for CAN communication
protocol and hardware used for communication and
diagnostics among vehicle components. MotoHawk
is developing a J1939 library to facilitate the
implementation of J1939 communication protocols

OBD

On-Board Diagnostics

A term referring to a vehicle’s self-diagnostics and
reporting capability. This usually refer to emission
requirements and regulations

OBD-FM

On Board Diagnostics
Fault Manager

A library of MotoHawk blocks that can be used by
an application team to develop software to meet
OBD emissions requirements. The use of the OBD-
FM blocks in itself does not make a system
emission compliant.

SIL

Software in the Loop
testing

80

Woodward

Manual 36333A

MotoHawk Resource Guide

MotoHawk Acronyms and Terms (cont’d.)

TERM OR
ABBREV. MEANING NOTES
Naming Method for ECUs
Ergégzs%?r;t;cr)’rlﬂllvlcidule) ECM- Engine Control Module; 0565: Refers to the
ECM-0565- Number of Pins YModeI Microprocessor; 128: Number of pins on the
128-1001C Year- Version Number - Module; 1001: The model year and revision - so
Type first module of 2010; C: Calibratable (DEV) module
Hardware Related Terms
ADC Analog to Digital Takes a 0-5V voltage and converts to binary to
Converter feed into the CPU
AIN Analog Input
Bedrock The ECM-0S12-70, 70 pin module
CAN Controller Area Network CAN 2.0B Communication Bus
CAM CAM input Signal input from the CAM sensor
. Signal input from the Crank Wheel Sensor, can be
S Crank input Vr or Hall effect
CPU Central Processing Unit The main microprocessor unit of the module.
DVRG Driver Ground
DVRP Driver Power - Pro_wdes battery power to the actuators through the
Main Power Relay
Noted by a 'C' for calibratable in the part name.
DEV Development Module The modules have additional parallel EEPROM
memory for on the fly calibrations
ECM Engine Control Module
Engine Control Module - New module being developed for the OH-6
ECM-OH
OH program
ECU Electronic Control Unit
ECUP ECU Power A_Iso called Wa_ke or Key - provides the 'wake-up'
signal to the microcontroller
EGO Exhaust Gas Oxygen
sensor
Engine Knock (sensor)
Bl Positive/Negative
EST Electronic Spark Timing Spark Output to drive a smart coil, logic level (0-
Output 5V) output
GCM General Control Module
HCM Hydraulic Control Module
HEGO Heated Exhaust Gas
Oxygen
HSO High Side Output
INJ Injector Fuel Injector Output
I/0 Input/output

Woodward

81

MotoHawk Resource Guide

Manual 36333A

MotoHawk Acronyms and Terms (cont’d.)

TERM OR
ABBREV. MEANING NOTES
Hardware Related Terms (continued)
LECM Large Engine Control New module being developed for large engines
Module
Connection to DVRP through a transistor - ground
LSO Low Side Output is switched for power to flow from DVRP to the
LSO output
Controls the Main Power Relay, MPRD block in
MPRD Main Power Relay Driver | MotoHawk provides for a controlled module
shutdown
PCMO09 Powertrain Control The ECM-5554-112, 112-pin module
Module 09
PCMHD Powertrain Control The 128-pin control module
Module - Heavy Duty P
Noted by an 'F' for flash in the part name. The
PROD Production Module modules do not have the additional memory for on
the fly calibrations.
RTC Real Time Clock
SCL+/SCL- fiiial Communications RS232 or RS485 communication channel
SECM-48 Small Engine Control The ECM-0563-048 module used in the OH-4
Module system
SPD+/SPD- Speed Input Input for measuring frequency with Vr or Hall Effect
sensor
when asserted signal disables the main power
STOP/ESTOP | Emergency Stop - relay and may also disable engine related outputs
such as injection and spark
Very fast section of the microprocessor used to
TPU Time Processing Unit make angle based calculation for engine position
and high resolution outputs
uChi The GCM-0S12-024-0401 Module
VARCAM Variable CAM CAM phasing
XDRP 5V 300mA power source

for sensors

82

Woodward

Manual 36333A MotoHawk Resource Guide

Chapter 7.

Service Oetions

Product Service Options

If you are experiencing problems with the installation, or unsatisfactory

performance of a Woodward product, the following options are available:

e Consult the troubleshooting guide in the manual.

e Contact the manufacturer or packager of your system.

e Contact the Woodward Full Service Distributor serving your area.

e Contact Woodward technical assistance (see “How to Contact Woodward”
later in this chapter) and discuss your problem. In many cases, your
problem can be resolved over the phone. If not, you can select which course
of action to pursue based on the available services listed in this chapter.

OEM and Packager Support: Many Woodward controls and control devices are
installed into the equipment system and programmed by an Original Equipment
Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the
programming is password-protected by the OEM or packager, and they are the best
source for product service and support. Warranty service for Woodward products
shipped with an equipment system should also be handled through the OEM or
Packager. Please review your equipment system documentation for details.

Woodward Business Partner Support: Woodward works with and supports a
global network of independent business partners whose mission is to serve the
users of Woodward controls, as described here:

e A Full Service Distributor has the primary responsibility for sales, service,
system integration solutions, technical desk support, and aftermarket
marketing of standard Woodward products within a specific geographic area
and market segment.

e An Authorized Independent Service Facility (AISF) provides authorized
service that includes repairs, repair parts, and warranty service on Woodward's
behalf. Service (not new unit sales) is an AISF's primary mission.

e A Recognized Engine Retrofitter (RER) is an independent company that
does retrofits and upgrades on reciprocating gas engines and dual-fuel
conversions, and can provide the full line of Woodward systems and
components for the retrofits and overhauls, emission compliance upgrades,
long term service contracts, emergency repairs, etc.

e A Recognized Turbine Retrofitter (RTR) is an independent company that
does both steam and gas turbine control retrofits and upgrades globally, and
can provide the full line of Woodward systems and components for the
retrofits and overhauls, long term service contracts, emergency repairs, etc.

You can locate your nearest Woodward distributor, AISF, RER, or RTR on our
website at:
www.woodward.com/directory.aspx

Woodward 83

MotoHawk Resource Guide Manual 36333A

Woodward Factory Servicing Options

The following factory options for servicing Woodward products are available
through your local Full-Service Distributor or the OEM or Packager of the
equipment system, based on the standard Woodward Product and Service
Warranty (5-01-1205) that is in effect at the time the product is originally shipped
from Woodward or a service is performed:

e Replacement/Exchange (24-hour service)

e Flat Rate Repair

e Flat Rate Remanufacture

Replacement/Exchange: Replacement/Exchange is a premium program
designed for the user who is in need of immediate service. It allows you to
request and receive a like-new replacement unit in minimum time (usually within
24 hours of the request), providing a suitable unit is available at the time of the
request, thereby minimizing costly downtime. This is a flat-rate program and
includes the full standard Woodward product warranty (Woodward Product and
Service Warranty 5-01-1205).

This option allows you to call your Full-Service Distributor in the event of an
unexpected outage, or in advance of a scheduled outage, to request a
replacement control unit. If the unit is available at the time of the call, it can
usually be shipped out within 24 hours. You replace your field control unit with
the like-new replacement and return the field unit to the Full-Service Distributor.

Charges for the Replacement/Exchange service are based on a flat rate plus
shipping expenses. You are invoiced the flat rate replacement/exchange charge
plus a core charge at the time the replacement unit is shipped. If the core (field
unit) is returned within 60 days, a credit for the core charge will be issued.

Flat Rate Repair: Flat Rate Repair is available for the majority of standard
products in the field. This program offers you repair service for your products with
the advantage of knowing in advance what the cost will be. All repair work carries
the standard Woodward service warranty (Woodward Product and Service
Warranty 5-01-1205) on replaced parts and labor.

Flat Rate Remanufacture: Flat Rate Remanufacture is very similar to the Flat
Rate Repair option with the exception that the unit will be returned to you in “like-
new” condition and carry with it the full standard Woodward product warranty
(Woodward Product and Service Warranty 5-01-1205). This option is applicable
to mechanical products only.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned for repair,
please contact your Full-Service Distributor in advance to obtain Return
Authorization and shipping instructions.

When shipping the item(s), attach a tag with the following information:
return authorization number;

name and location where the control is installed;

name and phone number of contact person;

complete Woodward part number(s) and serial number(s);
description of the problem;

instructions describing the desired type of repair.

84 Woodward

Manual 36333A MotoHawk Resource Guide

Packing a Control

Use the following materials when returning a complete control:

e protective caps on any connectors;

e antistatic protective bags on all electronic modules;

e packing materials that will not damage the surface of the unit;

e atleast 100 mm (4 inches) of tightly packed, industry-approved packing
material;

a packing carton with double walls;

e astrong tape around the outside of the carton for increased strength.

To prevent damage to electronic components caused by improper
NOTICE handling, read and observe the precautions in Woodward manual
82715, Guide for Handling and Protection of Electronic Controls,

Printed Circuit Boards, and Modules.

Replacement Parts

When ordering replacement parts for controls, include the following information:
e the part number(s) (XXXX-XXXX) that is on the enclosure nameplate;
e the unit serial number, which is also on the nameplate.

Engineering Services

Woodward offers various Engineering Services for our products. For these services,
you can contact us by telephone, by email, or through the Woodward website.

e Technical Support

e Product Training

e Field Service

Technical Support is available from your equipment system supplier, your local Full-
Service Distributor, or from many of Woodward’s worldwide locations, depending
upon the product and application. This service can assist you with technical
guestions or problem solving during the normal business hours of the Woodward
location you contact. Emergency assistance is also available during non-business
hours by phoning Woodward and stating the urgency of your problem.

Product Training is available as standard classes at many of our worldwide
locations. We also offer customized classes, which can be tailored to your needs
and can be held at one of our locations or at your site. This training, conducted
by experienced personnel, will assure that you will be able to maintain system
reliability and availability.

Field Service engineering on-site support is available, depending on the product
and location, from many of our worldwide locations or from one of our Full-
Service Distributors. The field engineers are experienced both on Woodward
products as well as on much of the non-Woodward equipment with which our
products interface.

For information on these services, please contact us via telephone, email us, or
use our website: www.woodward.com.

Woodward 85

MotoHawk Resource Guide

Manual 36333A

How to Contact Woodward

For assistance, call one of the following Woodward facilities to obtain the address
and phone number of the facility nearest your location where you will be able to

get information and service.

Electrical Power Systems

Engine Systems

Eacility --------------- Phone Number
Brazil-------------- +55 (19) 3708 4800
China ----------- +86 (512) 6762 6727
Germany --------- +49 (0) 21 52 14 51
India--------------- +91 (129) 4097100
Japan -------------- +81 (43) 213-2191
Korea -------------- +82 (51) 636-7080
Poland -------------- +48 12 295 13 00

United States ---- +1 (970) 482-5811

Turbine Systems

Facility --------------- Phone Number Facility --------------- Phone Number
Brazil-------------- +55 (19) 3708 4800 Brazil-------------- +55 (19) 3708 4800
China ----------- +86 (512) 6762 6727 China ----------- +86 (512) 6762 6727
Germany ------- +49 (711) 78954-510 Indi@--------------- +91 (129) 4097100
India--------------- +91 (129) 4097100 Japan -------------- +81 (43) 213-2191
Japan -------------- +81 (43) 213-2191 Korea -------------- +82 (51) 636-7080
Korea -------------- +82 (51) 636-7080 The Netherlands-+31 (23) 5661111
The Netherlands - +31 (23) 5661111 Poland -------------- +48 12 295 13 00

United States ---- +1 (970) 482-5811

United States ---- +1 (970) 482-5811

You can also locate your nearest Woodward distributor or service facility on our

website at:

www.woodward.com/directory.aspx

Technical Assistance
If you need to telephone for technical assistance, you will need to provide the following information.

Please write it down here before phoning:

Your Name
Site Location
Phone Number
Fax Number

Engine/Turbine Model Number
Manufacturer

Number of Cylinders (if applicable)
Type of Fuel (gas, gaseous, steam, etc)
Rating

Application

Control/Governor #1
Woodward Part Number & Rev. Letter

Control Description or Governor Type
Serial Number

Control/Governor #2
Woodward Part Number & Rev. Letter

Control Description or Governor Type
Serial Number

Control/Governor #3
Woodward Part Number & Rev. Letter

Control Description or Governor Type
Serial Number

If you have an electronic or programmable control, please have the adjustment setting positions or
the menu settings written down and with you at the time of the call.

86

Woodward

Revision History
|

Changes in Revision A—
. Convert data from MotoHawk brochure format to Woodward technical manual format

We appreciate your comments about the content of our publications.

Send comments to: icinfo@woodward.com

Please reference publication 36333.

\..WOODWARD

PO Box 1519, Fort Collins CO 80522-1519, USA
1000 East Drake Road, Fort Collins CO 80525, USA
Phone +1 (970) 482-5811 e Fax +1 (970) 498-3058

Email and Website—www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches,
as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.

2012/5/Skokie

