

# MFR 2 Multi Function Relay



Manual from Version 3.5xxx

Manual 37355A

#### WARNING

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

## CAUTION

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a
  grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.



## **OUT-OF-DATE PUBLICATION**

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website:

http://www.woodward.com/pubs/current.pdf

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:

http://www.woodward.com/publications

If your publication is not there, please contact your customer service representative to get the latest copy.

#### Important definitions



#### WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

#### CAUTION

Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.



#### NOTE

Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward All Rights Reserved.

# **Revision History**

| Rev. | Date     | Editor | Changes                                                                        |
|------|----------|--------|--------------------------------------------------------------------------------|
| NEW  | 06-05-12 | TP     | New release in WW format based on 37131C, minor changes; package harmonization |
| А    | 07-12-11 | TP     | Minor changes                                                                  |

# Contents

| CHAPTER 1. GENERAL INFORMATION                                 | <u> 7</u> |
|----------------------------------------------------------------|-----------|
| CHAPTER 2. ELECTROSTATIC DISCHARGE AWARENESS                   | 8         |
| CHAPTER 3. INSTALLATION                                        | 9         |
| Wiring Diagram                                                 | 10        |
| MFR 2S/PSV                                                     | 10        |
| MFR 2S/ <mark>PSVA</mark>                                      | 11        |
| MFR 2S/PSVT                                                    | 12        |
| MFR 2A/ <mark>PSV</mark>                                       | 13        |
| Power Supply                                                   | 14        |
| Measuring Inputs                                               | 14        |
| Voltage Measuring Inputs (PSV / PSVA)                          | 14        |
| Voltage Measuring Inputs (PSVT)                                | 16        |
| Current Measuring Inputs                                       | 18        |
| Generator                                                      | 18        |
| Mains                                                          | 18        |
| Auxiliary and Control Inputs                                   | 19        |
| Discrete Inputs                                                | 19        |
| Analog Input (PSVA)                                            | 19        |
| Auxiliary And Control Outputs                                  | 20        |
| Relay Outputs                                                  | 20        |
| Analog Outputs (PSVA)                                          | 20        |
| Pulse Outputs (PSVA)                                           | 20        |
| Controller Outputs                                             | 21        |
| Interface                                                      | 21        |
| Interface Wiring                                               | 21        |
| CAN Bus Shielding                                              | 22        |
| CAN Bus Loop                                                   | 22        |
| DPC - Direct Configuration Interface                           | 23        |
| CHAPTER 4. FUNCTIONAL DESCRIPTION                              | 24        |
| Basic Considerations                                           | 24        |
| Different Options                                              | 24        |
| Equipment with One Power Circuit Breaker                       | 24        |
| Equipment with Asynchronous/Induction Generators               | 24        |
| Systems in Block Connection (Generator and Transformer) (PSVT) | 25        |
| Direction of Power                                             | 26        |
| Power Factor Definition                                        | 26        |
| Circuit Breakers Control                                       | 28        |
| Operating Sequence for the MCB                                 | 28        |
| Operating Sequence for the GCB                                 | 29        |

| Function                            | 30 |
|-------------------------------------|----|
| Operating Conditions                | 30 |
| Monitoring Blocking at Startup      | 33 |
| Load and/or Var Sharing             | 34 |
| Monitoring and Protection Functions | 36 |
| Generator Protection                | 36 |
| Mains Protection                    | 36 |
| Alarm Class                         | 36 |
| Internally Detected Alarms          | 37 |

MFR 2 - Multi Function Relay

| Alarm Acknowledgement                                                             | 38 |
|-----------------------------------------------------------------------------------|----|
| CHAPTER 5. DISPLAY AND OPERATING ELEMENTS                                         |    |
| Brief Description of LEDs and Push Buttons                                        | 40 |
| LEDs                                                                              | 40 |
| Buttons                                                                           | 40 |
| Others                                                                            | 40 |
| LEDs                                                                              | 41 |
| Push Buttons                                                                      | 42 |
| LC Display                                                                        | 43 |
| Display In Automatic Mode (First Line of the Display: Measured Values)            | 43 |
| Display In Automatic Mode (Second Line of the Display: Measured Values)           | 43 |
| Display in Automatic Mode (Second Line of the Display: Alarm Indication)          | 44 |
| CHAPTER 6. CONFIGURATION                                                          | 45 |
| Basic Data                                                                        |    |
| Configuration Access                                                              | 46 |
| Password                                                                          | 46 |
| Change Passwords                                                                  | 47 |
| Direct Configuration                                                              | 48 |
| Service Display                                                                   | 49 |
| Double Voltage/Frequency Display for Synchronous Generators                       |    |
| Double Voltage/Frequency Display for Asynchronous/Induction Generators            | 49 |
| Relay States                                                                      | 49 |
| Generator Number                                                                  | 50 |
| Change Relay Assignment                                                           | 50 |
| Auto Acknowledgement                                                              | 51 |
| Configure Basic Settings                                                          | 52 |
| Configure Controller                                                              | 56 |
| Controller Shutoff for Negative Load Jumps (Only with Three-Position Controllers) | 56 |
| Shutdown                                                                          | 57 |
| Idle Control                                                                      | 57 |
| Frequency Controller                                                              | 58 |
| Voltage Controller (MFR 2S)                                                       | 59 |
| Synchronization (MFR 2S)                                                          | 60 |
| Connection Functions (MFR 2A)                                                     | 61 |
| Dead Bus Start (MFR 2S)                                                           | 62 |
| Synchronization Time Monitoring (MFR 2S)                                          | 62 |
| Power Factor Controller (MFR 2S)                                                  | 63 |

 Real Power Controller
 65

 Load/var Sharing
 68

Manual 37355A

| Monitoring Configuration                   | 69         |
|--------------------------------------------|------------|
| Generator Overload Monitoring              | 69         |
| Generator Reverse/Reduced Power Monitoring | 70         |
| Unbalanced Load Monitoring                 | 71         |
| Definite Time-Overcurrent Monitoring       | 72         |
| Reactive Power Monitoring                  | 73         |
| Generator Frequency Monitoring             | 74         |
| Generator Voltage Monitoring               | 75         |
| Mains Frequency Monitoring                 | 77         |
| Mains Voltage Monitoring                   | 78         |
| Voltage Asymmetry Monitoring               | 79         |
| Phase Shift Monitoring (MFR 2S)            | 80         |
| df/dt Monitoring (MFR 2S/PSVA)             | 81         |
| Mains Decoupling                           | 81         |
| Battery Voltage Monitoring                 | 82         |
| Centralized Alarm                          | 82         |
| Enable Monitoring                          | 82         |
| Configure Pulse Outputs (MFR 2S/PSVA)      | 83         |
| Real Power Pulse Counter                   | 83         |
| Reactive Power Pulse Counter               | 83         |
| Configure Analog Outputs (MFR 2S/PSVA)     | 84         |
| Interface Configuration                    | 84         |
| CAN Bus Interface                          | 84         |
| Counter Configuration                      | 85         |
| Maintenance Call Configuration             | 85         |
| Operation Hours Counter Configuration      | 85         |
| Start Counter Configuration                | 85         |
| Energy Counter Configuration               | 86         |
| Resetting the Current Slave Pointer        | 86         |
| Discrete Inputs Configuration              | 87         |
| DI Operation Mode Configuration            | 87         |
| DI Alarm Text Configuration                | 88         |
| Password Configuration                     | 88         |
| CHAPTER 7 COMMISSIONING                    | 89         |
|                                            |            |
| APPENDIX A. DIMENSIONS                     | <u> 90</u> |
| APPENDIX B. TECHNICAL DATA                 | <u> 91</u> |
| APPENDIX C. INTERFACE TELEGRAM             | <u> 93</u> |
| Transmission Telegram                      | 93         |
| Receiving Telegram                         | 96         |
| APPENDIX D. PARAMETER LIST                 | <u></u>    |
| APPENDIX E. SERVICE OPTIONS                | 103        |
| Product Service Options                    |            |
| Returning Equipment For Repair             |            |
| Packing A Control                          | 104        |
| Return Authorization Number RAN            | 104        |
| Replacement Parts                          | 104        |
| How To Contact Woodward                    | 105        |
| Engineering Services                       |            |
| Technical Assistance                       |            |

# **Illustrations and Tables**

#### Illustrations

| Figure 3-1: Wiring diagram MFR 2S/PSV                | 10 |
|------------------------------------------------------|----|
| Figure 3-2: Wiring diagram MFR 2S/PSVA               | 11 |
| Figure 3-3: Wiring diagram MFR 2S/PSVT               | 12 |
| Figure 3-4: Wiring diagram MFR 2A/PSV                | 13 |
| Figure 3-5: Power supply (24 Vdc)                    | 14 |
| Figure 3-6: Measuring inputs - generator voltage     | 14 |
| Figure 3-7: Measuring inputs - busbar voltage        | 15 |
| Figure 3-8: Measuring inputs - mains voltage         | 15 |
| Figure 3-9: Measuring inputs - generator voltage     | 16 |
| Figure 3-10: Measuring inputs - generator voltage    | 16 |
| Figure 3-11: Measuring inputs - mains voltage        | 17 |
| Figure 3-12: Measuring inputs - Generator current    | 18 |
| Figure 3-13: Measuring inputs - Generator current    | 18 |
| Figure 3-14: Discrete inputs                         | 19 |
| Figure 3-15: Analog input                            | 19 |
| Figure 3-16: Relay outputs                           | 20 |
| Figure 3-17: Analog outputs                          | 20 |
| Figure 3-18: Pulse outputs                           | 20 |
| Figure 3-19: Pulse output - connection example       | 20 |
| Figure 3-20: Controller - three position controller  | 21 |
| Figure 3-21: Interface - terminals                   | 21 |
| Figure 3-22: Interface - CAN bus shielding           | 22 |
| Figure 3-23: Interface - loop the CAN bus            | 22 |
| Figure 4-1: Block connection - schematic diagram     | 25 |
| Figure 4-2: Direction of power                       | 26 |
| Figure 4-3: Activation of the circuit breakers - MCB | 28 |
| Figure 4-4: Activation of the circuit breakers - GCB | 29 |
| Figure 4-5: Monitoring blocking at startup           | 33 |
| Figure 4-6: Load/var sharing - schematic             | 35 |
| Figure 5-1: Front panel                              | 39 |
| Figure 7-1: Dimensions                               | 90 |

#### Tables

| Table 3-1: Conversion chart - wire size                                         | 9  |
|---------------------------------------------------------------------------------|----|
| Table 3-2: Power supply - terminal assignment                                   | 14 |
| Table 3-3: Measuring inputs - generator voltage - terminal assignment           | 14 |
| Table 3-4: Measuring inputs - busbar voltage - terminal assignment              | 15 |
| Table 3-5: Measuring inputs - mains voltage - terminal assignment               | 15 |
| Table 3-6: Measuring inputs - generator voltage LV - terminal assignment        | 16 |
| Table 3-7: Measuring inputs - generator voltage HV - terminal assignment        |    |
| Table 3-8: Measuring inputs - mains voltage - terminal assignment               | 17 |
| Table 4-1: Operating conditions - idle control and synchronization              |    |
| Table 4-2: Operating conditions - idle control and synchronization - conditions |    |
| Table 4-3: Operating conditions - dead bus start                                |    |
| Table 4-4: Operating conditions - dead bus start - conditions                   |    |
| Table 4-5: Operating conditions - isolated operation                            |    |
| Table 4-6: Operating conditions - mains parallel operation                      |    |
| Table 4-7: Alarms - text messages                                               |    |
| Table 4-8: Alarms - short acknowledgment                                        |    |
| Table 4-9: Alarms - long acknowledgment                                         |    |

## Chapter 1. General Information

The MFR 2 is a multi function relay with mains and generator protection and control. The ability for the MFR 2 to quickly decouple from the mains when working in parallel with the mains gives complete generator protection for frequency, voltage, and real and re-active power control allowing load/var sharing between as many as eight units.

The detailed model description for the MFR 2 reads as follows:

| $MFR2 \times 45B/\times \times$ |                                                                                                                                                                                      |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Package according to the package list.<br>These packages can be found in the manual. Each chapter headline<br>points out if the described function is standard or part of a package. |
|                                 | Mounting<br>[B] Flush-mounting                                                                                                                                                       |
|                                 | CTs, current transformers, secondary<br>[1] =/1 A<br>[5] =/5 A                                                                                                                       |
|                                 | PTs, maximum voltage transformers, secondary<br>[1] = 100 Vac<br>[4] = 400 Vac                                                                                                       |
|                                 | Model<br>S = for synchronous generators<br>A = for asynchronous generators                                                                                                           |
|                                 | Туре                                                                                                                                                                                 |

Example:

- <u>MFR2S15B/PSVA</u> (flush mounted, standard unit for synchronous generators with 100 Vac PT measuring inputs, 5 Aac CT measuring input, mains ROCOF protection, two analog outputs and pulse output)
- <u>MFR2A45B/PSV</u> (flush mounted, standard unit for asynchronous generators with 400 Vac PT measuring inputs, 5 Aac CT measuring input)

**Intended Use** The unit must only be operated in the manner described by this manual. The prerequisite for a proper and safe operation of the product is correct transportation, storage, and installation as well as careful operation and maintenance.



## NOTE

This manual has been developed for a unit fitted with all available options. Inputs/outputs, functions, configuration screens, and other details described, which do not exist on your unit, may be ignored.

The present manual has been prepared to enable the installation and commissioning of the unit. Due to the large variety of parameter settings, it is not possible to cover every combination. The manual is therefore only a guide. In case of incorrect entries or a total loss of functions, the default settings may be taken from the list of parameters in the appendix of this manual.

# Chapter 2. Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as easily as synthetics.
- 3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, etc.) away from the control, modules, and work area as much as possible.

#### 4. **Opening the control cover may void the unit warranty.**

Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:

- Ensure that the device is completely voltage-free (all connectors have to be disconnected).
- Do not touch any part of the PCB except the edges.
- Do not touch the electrical conductors, connectors, or components with conductive devices or with bare hands.
- When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.



#### CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.* 

# Chapter 3. Installation



## CAUTION

A circuit breaker must be provided near to the unit and in a position easily accessible to the operator. This must also bear a sign identifying it as an isolating switch for the unit.

| - | - |   |
|---|---|---|
| 1 | 2 |   |
|   | Т | ) |
|   | - | / |

## NOTE

Inductivities connected (such as coils of operating current or undervoltage tripping units, or auxiliary or power contacts) must be connected to a suitable interference suppressor.



## WARNING

All technical data and ratings indicated in this chapter are not definite! Only the values indicated in the Technical Data section on page 91 are valid!

The following chart may be used to convert square millimeters [mm<sup>2</sup>] to AWG and vice versa:

| AWG | mm <sup>2</sup> | AWG    | mm <sup>2</sup> | AWG     | mm <sup>2</sup> |
|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|--------|-----------------|---------|-----------------|
| 30  | 0.05            | 21  | 0.38            | 14  | 2.5             | 4   | 25              | 3/0    | 95              | 600MCM  | 300             |
| 28  | 0.08            | 20  | 0.5             | 12  | 4               | 2   | 35              | 4/0    | 120             | 750MCM  | 400             |
| 26  | 0.14            | 18  | 0.75            | 10  | 6               | 1   | 50              | 300MCM | 150             | 1000MCM | 500             |
| 24  | 0.25            | 17  | 1.0             | 8   | 10              | 1/0 | 55              | 350MCM | 185             |         |                 |
| 22  | 0.34            | 16  | 1.5             | 6   | 16              | 2/0 | 70              | 500MCM | 240             |         |                 |

Table 3-1: Conversion chart - wire size

## **Wiring Diagram**

#### 

#### MFR 2S/PSV



Figure 3-1: Wiring diagram MFR 2S/PSV

#### MFR 2S/PSVA



Figure 3-2: Wiring diagram MFR 2S/PSVA

#### MFR 2S/PSVT



Figure 3-3: Wiring diagram MFR 2S/PSVT

#### MFR 2A/PSV



Figure 3-4: Wiring diagram MFR 2A/PSV

## **Power Supply**

#### 



Figure 3-5: Power supply (24 Vdc)

| Terminal | Description                                                                                                             | A <sub>max</sub>    |
|----------|-------------------------------------------------------------------------------------------------------------------------|---------------------|
| 0        | Neutral point of the three-phase system or neutral terminal of the voltage trans-<br>former (measuring reference point) | Solder lug          |
| 1        | 8 to 36 V DC, 15 W                                                                                                      | 2.5 mm <sup>2</sup> |
| 2        | 0 V reference point                                                                                                     | 2.5 mm <sup>2</sup> |

Table 3-2: Power supply - terminal assignment

## **Measuring Inputs**

#### 

## NOTE

Starting with version V3.5013, the unit is equipped with an automatic rotary field detection and may therefore be used in three-phase systems with a clockwise rotary field (right-handed rotary field) as well as with a counter-clockwise rotary field (left-handed rotary field).

## Voltage Measuring Inputs (PSV / PSVA)

#### Generator



Figure 3-6: Measuring inputs - generator voltage

| Terminal | Measurement     | Description                                       | A <sub>max</sub>    |
|----------|-----------------|---------------------------------------------------|---------------------|
| 20       | 400 V direct or | Generator voltage L1                              | 2.5 mm <sup>2</sup> |
| 21       | via transformer | Generator voltage L2                              | 2.5 mm <sup>2</sup> |
| 22       |                 | Generator voltage L3                              | 2.5 mm <sup>2</sup> |
| 0        | /100 V          | Neutral point of the 3-phase system / transformer | Solder lug          |

Table 3-3: Measuring inputs - generator voltage - terminal assignment

#### **Busbar**



Figure 3-7: Measuring inputs - busbar voltage

| Terminal | Measurement               | Description       | A <sub>max</sub>    |
|----------|---------------------------|-------------------|---------------------|
| 23       | 400 V direct or           | Busbar voltage L1 | 2.5 mm <sup>2</sup> |
| 24       | via transformer<br>/100 V | Busbar voltage L2 | 2.5 mm <sup>2</sup> |

Table 3-4: Measuring inputs - busbar voltage - terminal assignment

Mains



Figure 3-8: Measuring inputs - mains voltage

| Terminal | Measurement     | Description                                       | A <sub>max</sub>    |
|----------|-----------------|---------------------------------------------------|---------------------|
| 50       | 400 V direct or | Mains voltage L1                                  | 2.5 mm <sup>2</sup> |
| 51       | via transformer | Mains voltage L2                                  | 2.5 mm <sup>2</sup> |
| 52       |                 | Mains voltage L3                                  | 2.5 mm <sup>2</sup> |
| 0        | /100 V          | Neutral point of three-phase system / transformer | Solder lug          |

Table 3-5: Measuring inputs - mains voltage - terminal assignment



## NOTE

The mains voltage measuring inputs must be connected if the unit is used in mains parallel operation.

## Voltage Measuring Inputs (PSVT)

#### Generator - Low Voltage Side (LV)



Figure 3-9: Measuring inputs - generator voltage

| Terminal | Measurement     | Description                                       | A <sub>max</sub>    |
|----------|-----------------|---------------------------------------------------|---------------------|
| 20       | 400 V direct or | Generator voltage L1 - low voltage side - LV      | 2.5 mm <sup>2</sup> |
| 21       | via transformer | Generator voltage L2 - low voltage side - LV      | 2.5 mm <sup>2</sup> |
| 22       |                 | Generator voltage L3 - low voltage side - LV      | 2.5 mm <sup>2</sup> |
| 0        | /100 V          | Neutral point of the 3-phase system / transformer | Solder lug          |

Table 3-6: Measuring inputs - generator voltage LV - terminal assignment

#### Generator - High Voltage Side (HV)



Figure 3-10: Measuring inputs - generator voltage

| Terminal | Measurement               | Description                                   | A <sub>max</sub>    |
|----------|---------------------------|-----------------------------------------------|---------------------|
| 23       | 400 V direct or           | Generator voltage L1 - high voltage side - HV | 2.5 mm <sup>2</sup> |
| 24       | via transformer<br>/100 V | Generator voltage L2 - high voltage side - HV | 2.5 mm <sup>2</sup> |

Table 3-7: Measuring inputs - generator voltage HV - terminal assignment

#### Mains



Figure 3-11: Measuring inputs - mains voltage

| Terminal | Measurement     | Description                                       | A <sub>max</sub>    |
|----------|-----------------|---------------------------------------------------|---------------------|
| 50       | 400 V direct or | Mains voltage L1                                  | 2.5 mm <sup>2</sup> |
| 51       | 400 v ullect of | Mains voltage L2                                  | 2.5 mm <sup>2</sup> |
| 52       |                 | Mains voltage L3                                  | 2.5 mm <sup>2</sup> |
| 0        | /100 v          | Neutral point of three-phase system / transformer | Solder lug          |

Table 3-8: Measuring inputs - mains voltage - terminal assignment

## **Current Measuring Inputs**



## WARNING

Before disconnecting the secondary terminals of the transformer or the connection of the transformer at the unit make sure that the transformer is short circuited.



## NOTE

Current transformers are generally to be earthed on one side secondarily.

## Generator



Figure 3-12: Measuring inputs - Generator current

| Terminal | Measurement | Description                                      | A <sub>max</sub>    |
|----------|-------------|--------------------------------------------------|---------------------|
| 25       |             | Generator current L1; transformer terminal s2(l) | 2.5 mm <sup>2</sup> |
| 26       |             | Generator current L1; transformer terminal s1(k) | 2.5 mm <sup>2</sup> |
| 29       | Transformer | Generator current L2; transformer terminal s2(1) | 2.5 mm <sup>2</sup> |
| 30       | /5A         | Generator current L2; transformer terminal s1(k) | 2.5 mm <sup>2</sup> |
| 31       |             | Generator current L3; transformer terminal s2(1) | 2.5 mm <sup>2</sup> |
| 32       |             | Generator current L3; transformer terminal s1(k) | 2.5 mm <sup>2</sup> |

#### Mains



Figure 3-13: Measuring inputs - Generator current

| Terminal | Measurement | Description                                  | A <sub>max</sub>    |
|----------|-------------|----------------------------------------------|---------------------|
| 27       | Transformer | Mains current L1; transformer terminal s2(1) | 2.5 mm <sup>2</sup> |
| 28       | /5A         | Mains current L1; transformer terminal s1(k) | 2.5 mm <sup>2</sup> |

## **Auxiliary and Control Inputs**

#### 

#### **Discrete Inputs**



#### CAUTION

Please note that the maximum voltages which may be applied at the discrete inputs are defined as follows. Voltages higher than those specified destroy the hardware!

• Maximum input range: <sup>+</sup>/<sub>-</sub>18 to 250 Vac/dc.

• 18 to 250 Vac/dc Signal device Reply Biscrete input Discrete input Discrete input

Figure 3-14: Discrete inputs

| Terminal        | Associated    | Description                         |                  | A <sub>max</sub>    |
|-----------------|---------------|-------------------------------------|------------------|---------------------|
|                 | zero-terminal | (acc. DIN 40 719 part 3, 5.8.3)     |                  |                     |
| Make contact    |               |                                     |                  |                     |
| A               | В             |                                     |                  |                     |
| 3               |               | Enable GCB                          |                  | 2.5 mm <sup>2</sup> |
| 5               | 7             | Switching power set point value 1/2 |                  | 2.5 mm <sup>2</sup> |
| 6               | /             | Enable monitoring                   |                  | 2.5 mm <sup>2</sup> |
| 53              |               | Release MCB                         |                  | 2.5 mm <sup>2</sup> |
| 34              |               | not used                            | Discrete input 1 | 2.5 mm <sup>2</sup> |
| 35              | 33            | Isolated operation controller ON    | Discrete input 2 | 2.5 mm <sup>2</sup> |
| 36              |               | External acknowledgement            | Discrete input 3 | 2.5 mm <sup>2</sup> |
| 60              |               | Blocking of mains protection        | Discrete input 4 | 2.5 mm <sup>2</sup> |
| 61              |               | Discrete input 5                    |                  | 2.5 mm <sup>2</sup> |
| 62              | 65            | Discrete input 6                    |                  | 2.5 mm <sup>2</sup> |
| 63              |               | Discrete input 7                    |                  | 2.5 mm <sup>2</sup> |
| 64              |               | Discrete input 8                    |                  | 2.5 mm <sup>2</sup> |
| Normally closed | l contact     |                                     |                  |                     |
| С               | D             |                                     |                  |                     |
| 4               | 7             | Reply: GCB is open                  |                  | 2.5 mm <sup>2</sup> |
| 54              | /             | Reply: MCB is open                  |                  | 2.5 mm <sup>2</sup> |

## Analog Input (PSVA)



## WARNING

The analog input of the MFR 2 is not isolated. When using an isolation monitor, we recommend to use two-pole, isolated transmitters.

The analog input for active transmitters (0 to 20 mA) should only be operated with two-pole, isolated transmitters.



Figure 3-15: Analog input

| Terminal |    |    | Description                               | A <sub>max</sub>    |
|----------|----|----|-------------------------------------------|---------------------|
| A        | B  | С  | (any of the following analog inputs:)     |                     |
| 70       | 71 | 72 | Analog input 0/4-20 mA, Set point value P | 2,5 mm <sup>2</sup> |

## **Auxiliary And Control Outputs**

#### 

## **Relay Outputs**



Figure 3-16: Relay outputs

| Root | Closing | Description                             | A <sub>max</sub>    |
|------|---------|-----------------------------------------|---------------------|
| A    | В       |                                         |                     |
| 14   | 15      | Synchronizing pulse, Command: close GCB | 2.5 mm <sup>2</sup> |
| 16   | 17      | Synchronizing pulse, Command: close MCB | 2.5 mm <sup>2</sup> |
| 39   | 40      | Synchronizing pulse, Command: open MCB  | 2.5 mm <sup>2</sup> |
| 41   | 42      | Synchronizing pulse, Command: open GCB  | 2.5 mm <sup>2</sup> |
| 18   | 19      | Ready for operation                     | 2.5 mm <sup>2</sup> |
| 37   | 38      | Relay output 4                          | 2.5 mm <sup>2</sup> |
| 43   | 44      | Relay output 3                          | 2.5 mm <sup>2</sup> |
| 45   | 46      | Relay output 2                          | 2.5 mm <sup>2</sup> |
| 47   | 48      | Relay output 1                          | 2.5 mm <sup>2</sup> |

## Analog Outputs (PSVA)

| A | I <sub>A</sub> | Analog output |
|---|----------------|---------------|
| æ | 0 V            |               |

Figure 3-17: Analog outputs

| I <sub>A</sub> | 0 V | Description                | A <sub>max</sub>    |
|----------------|-----|----------------------------|---------------------|
| A              | В   |                            |                     |
| 80             | 81  | Analog output 0/4 to 20 mA | 1.5 mm <sup>2</sup> |
| 82             | 83  | Analog output 0/4 to 20 mA | 1.5 mm <sup>2</sup> |

## Pulse Outputs (PSVA)



Figure 3-18: Pulse outputs

| Terminal |    | Description                | A <sub>max</sub> |  |  |
|----------|----|----------------------------|------------------|--|--|
| Α        | 87 | Pulse output (kWh pulse)   |                  |  |  |
| В        | 86 | Emitter (open collector)   |                  |  |  |
| Α        | 85 | Pulse output (kvarh pulse) |                  |  |  |
| В        | 84 | Emitter (open collector)   |                  |  |  |



Figure 3-19: Pulse output - connection example

## **Controller Outputs**

The governors are designed as three-step controllers (made of a change-over contact and a make contact).

#### **Three-Step Controllers**



Figure 3-20: Controller - three position controller

| Terminal |        | Description                | A <sub>max</sub>    |  |
|----------|--------|----------------------------|---------------------|--|
| 8        | common |                            | 2.5 mm <sup>2</sup> |  |
| 9        | higher | Speed/frequency controller | 2.5 mm <sup>2</sup> |  |
| 10       | lower  |                            | 2.5 mm <sup>2</sup> |  |
| 11       | common |                            | 2.5 mm <sup>2</sup> |  |
| 12       | higher | Voltage controller         | 2.5 mm <sup>2</sup> |  |
| 13       | lower  |                            | 2.5 mm <sup>2</sup> |  |

## Interface

#### 

Interface Wiring



Figure 3-21: Interface - terminals

| Terminal |       |     |       |       | Description |
|----------|-------|-----|-------|-------|-------------|
| X1       | X2    | X3  | X4    | X5    |             |
| CAN-H    | CAN-L | GND | CAN-H | CAN-L | CAN bus     |

### **CAN Bus Shielding**



Figure 3-22: Interface - CAN bus shielding

#### **CAN Bus Loop**

## NOTE

Please note that the CAN bus must be terminated at both ends with an impedance which corresponds to the wave impedance of the cable (e.g. 120 Ohm). The Engine CAN bus is terminated between CAN-H and CAN-L.



Figure 3-23: Interface - loop the CAN bus

#### Possible CAN Bus Problems

If no data is transmitted on the CAN bus, check the following common reasons for CAN bus communication problems:

- T structure bus is utilized
- CAN-L and CAN-H are interchanged
- Not all devices on the bus are using identical Baud rates
- Terminating resistor are missing
- Baud rate to high for wiring length

#### Maximum CAN Bus Length

The maximum length of the communication bus is 250 m.

The maximum specified length for the communication bus wiring might not be achieved if wire of poor quality is utilized, there is high contact resistance, or other conditions exist.

## **DPC - Direct Configuration Interface**



## NOTE

To configure via the configuration interface (direct configuration) you need the configuration cable (ordering code "DPC"), the program LeoPC1 (delivered with the cable) and the corresponding configuration files. Please consult the online help installed when the program is installed for a description of the LeoPC1 program and its setup.

If the parameter "Direct config." is switched to ON, the communication via the interface on terminals X1 through X5 is disabled.

# Chapter 4. Functional Description

## **Basic Considerations**

## **Different Options**

The MFR 2 consists of a base unit which is available in different packages. The particular package is described on the nameplate. This manual describes the basic unit and all packages.

## Equipment with One Power Circuit Breaker

The MFR 2 is designed for systems with two power circuit breakers (mains power circuit breaker MCB and generator power circuit breaker GCB). However, it is also possible to operate systems with only one power circuit breaker. It is also advisable to trigger this breaker from the unit as a GCB and to connect the corresponding terminals. Moreover, the following is valid:

- If the generator is only operated in isolated operation or isolated parallel operation, the following applies: - "Reply: MCB is open" (term. 54): HIGH signal (log. "1") and
  - "Enable MCB" (term. 53): LOW signal (logical "0").
- If the generator is only operated in mains parallel operation, the following applies:
  - "Reply: MCB is open" (term. 54): LOW Signal (logical "0") and
  - "Enable MCB" (term. 53): HIGH signal (logical "1").

The type and manner of system operation must be considered for monitoring configuration.

#### **Equipment with Asynchronous/Induction Generators**

If systems with asynchronous/induction generators are used, the following must be observed:

- According to the concept of an asynchronous/induction generator there is no voltage and power factor controller.
- Systems with asynchronous/induction generators are 1 CB systems. Only the GCB is operated.
- Connect the remanent voltage to terminals 23/24. Terminal 23/24 has a zoom function as long as the unit is not operated mains parallel, as the unstimulated synchronous generator is not yet able to generate voltage. Control is carried out on the basis of voltage measurement at terminals 20/21/22 and 50/51/52. Terminal 20 must thus be connected to terminal 23 and terminal 21 to terminal 24.
- Make sure that the input "Reply: MCB is open" is controlled by a continuous LOW signal (e.g. do not connect or link with the terminal 7 "Common").
- Connect the terminal 53 "Enable MCB" to a continuous HIGH signal (e.g. connect with the terminal 1 "Power supply"). This informs the unit that it is in mains parallel operation. Power control is carried out.
- The relay "Command: close MCB" and "Command: open MCB" and the LED "Mains CB on" have no function.
- The generator frequency control and blocking control when starting respond on the measured frequency of the remanence voltage or generator voltage.
- The generator voltage control becomes only active if the GCB is closed.
- There is no synchronization time control.

## Systems in Block Connection (Generator and Transformer) (PSVT)

The version MFR 2S/PSVT is designed for systems in which generator and transformer are directly connected.



# NOTE

The **PSVT** package can operate only one circuit breaker. Thereby the synchronization voltage is measured twice directly at the circuit breaker. The third measuring point (current and voltage) is used only for generator protection. As this measuring point is taken separately and independent of both synchronization voltages, the phase shift caused by the transformer can be ignored.



Figure 4-1: Block connection - schematic diagram

The individual measuring points have the following functions:

- Voltage, generator LV = protection and monitoring
- Current, generator = protection and monitoring
- Voltage, generator HV = synchronization and monitoring
- Voltage, mains = protection, synchronization and monitoring
- Current, mains = measuring and monitoring

Concerning the configuration and functionality of the MFR 2S/PSVT there are deviations compared with MFR 2S/PSV or MFR 2S/PSVA which were not described in the different chapters. These are listed in the following:

- The MFR 2S/PSVT can operate only the generator circuit breaker (GCB).
- The "Reply: MCB is open" is used to realize mains parallel operation. The LED "Mains-CB ON" indicates the response of the MCB. If the system has no separate MCB and the connection to the mains is made by closing the GCB, the input "Reply: MCB is open" has to be connected steady with 0 V.
- The discrete input "Enable MCB" may not be attached or should be connected with 0 V.
- As no MCB is operated, all screens and service monitoring referring to the MCB do not apply.
- There is no dead bus operation function.
- There is no busbar voltage, but a "generator voltage of the low voltage side" and a "generator voltage of the high voltage side". By using these terms it is assumed that the low voltage side of the transformer is directly connected with the generator and the high voltage side is connected with the mains (as a version of this definition the MFR 2 can also operate higher voltages on the low voltage side than on the high voltage side.).
- The mains voltage (terminals 50/51) and the generator voltage high voltage side (terminals 23/24) are the voltages used to synchronize the GCB.
- The service monitoring is only used to display the both voltages which have to be synchronized.
- The measurement of generator current and generator voltage of the low voltage side are used for generator protection only.
- A possible phase shift between high and low voltage side caused by the transformer is not relevant for the functions of the MFR 2S/PSVT.

## **Direction of Power**

#### 

If the unit's current transformers are wired according to the pin diagram shown, the following values are displayed:

Positive generator real power Inductive generator power factor Positive mains real power Inductive mains power factor The generator supplies real power. The generator is overexcited and supplies inductive reactive power. Real power is supplied to the mains. The mains supplies inductive reactive power.



Figure 4-2: Direction of power

## **Power Factor Definition**

#### 

The phasor diagram is used from the generator's view. This defines the following definitions. Power Factor is defined as a ratio of the real power to apparent power. In a purely resistive circuit, the voltage and current waveforms are instep resulting in a ratio or power factor of 1.00 (often referred to as unity). In an inductive circuit the current lags behind the voltage waveform resulting in usable power (real power) and unusable power (reactive power). This results in a positive ratio or lagging power factor (i.e. 0.85lagging). In a capacitive circuit the current waveform leads the voltage waveform resulting in usable power (real power) and unusable power (reactive power). This results in a negative ratio or a leading power factor (i.e. 0.85leading).

| Inductive: Electrical load whose current waveform lags   | Capacitive: Electrical load whose current waveform     |
|----------------------------------------------------------|--------------------------------------------------------|
| the voltage waveform thus having a lagging power fac-    | leads the voltage waveform thus having a leading       |
| tor. Some inductive loads such as electric motors have   | power factor. Some capacitive loads such as capacitor  |
| a large startup current requirement resulting in lagging | banks or buried cable result in leading power factors. |
| power factors.                                           |                                                        |

Different power factor displays at the unit:

| i0.91 (inductive) | c0.93 (capacitive) |
|-------------------|--------------------|
| lg.91 (lagging)   | ld.93 (leading)    |

Reactive power display at the unit:

| 70 kvar (positive) | -60 kvar (negative) |
|--------------------|---------------------|

Output at the interface:

| + (positive) | - (negative) |
|--------------|--------------|
|              |              |

In relation to the voltage, the current is

| · ·     |         |
|---------|---------|
| lagging | leading |
| lagging | leaung  |
| 66 6    | Ŭ       |
|         |         |

The generator is

| under excited |
|---------------|
|---------------|

Control: If the control unit is equipped with a power factor controller

| A voltage lower "-" signal is output as long as the   | A voltage raise "+" signal is output as long as the    |
|-------------------------------------------------------|--------------------------------------------------------|
| measured value is "more inductive" than the reference | measured value is "more capacitive" than the reference |
| set point                                             | set point                                              |
| Example: measured = $i0.91$ ; set point = $i0.95$     | Example: measured = $c0.91$ ; set point = $c0.95$      |

Phasor diagram:



## **Circuit Breakers Control**

#### 

## **Operating Sequence for the MCB**

Figure 4-3 represents the switch behavior for the following settings:

#### MCB open via "Enable MCB": ON

Relay "Command: Open MCB": logic: A (operating current; NO)

Additional information may be obtained from the descriptions of the configuration screens.



Figure 4-3: Activation of the circuit breakers - MCB

#### **ON/OFF** switching pulse:

1 Synchronization

#### $\rightarrow$ 2 close MCB:

- 2 closing pulse for MCB energized
- *3* breaker inherent delay
- *4* closing pulse de-energized

#### $\rightarrow$ 5 open MCB:

- 5 opening pulse for MCB energized
- *6* closing pulse de-energized

## **Operating Sequence for the GCB**

Figure 4-4 represents the switch behavior for the following settings:

Shutdown: ON Relay "Command: open GCB", logic: A (operating current; NO) GCB continuous pulse: OFF

Additional information may be obtained from the descriptions of the configuration screens.



Figure 4-4: Activation of the circuit breakers - GCB

#### **ON/OFF** switching pulse:

*1* Synchronization

 $\rightarrow$  2 close GCB:

2 closing pulse for GCB energized

*3* breaker inherent delay

*4* closing pulse de-energized

#### $\rightarrow$ 6 open GCB:

*5* start of power reduction

*6* end of power reduction

6 opening pulse for GCB energized

7 opening pulse de-energized

Between 5 and 6 the power is reduced. When the power is close to zero, the GCB is opened.

## Function

#### 

## **Operating Conditions**

#### Idle Control and Synchronization

**Idle control:** Generator voltage and frequency are adjusted to the configured set point values by raising and lowering the controller outputs for voltage and speed/frequency as required.

**Synchronization:** Generator voltage and frequency are adjusted to the busbar values (synchronization GCB) or to the mains values (synchronization MCB) by raising and lowering the controller outputs for voltage and speed as required. The command to connect the appropriate circuit breaker is output with respect to the breaker connect time so the breaker closes at the synchronization point.

| Input signals         |            |                       | Function   | l-<br>IS                                             |                         |
|-----------------------|------------|-----------------------|------------|------------------------------------------------------|-------------------------|
| Reply:<br>GCB is open | Enable GCB | Reply:<br>MCB is open | Enable MCB |                                                      | Additional cond<br>tion |
| 1                     | 0          | х                     | х          | No-load (idle) control (generator frequency/voltage) | А                       |
| 1                     | 0          | х                     | х          | No control                                           | В                       |
| 1                     | 1          | х                     | 0          | Synchronization of the GCB                           | С                       |
| 0                     | х          | 1                     | 1          | Synchronization of the MCB                           | D                       |

0: "OFF" / 1: "ON" / x: signal has no importance (0 or 1)

Table 4-1: Operating conditions - idle control and synchronization

A no-load operation only occurs if the generator frequency is larger than 42 Hz. A control of the voltage only occurs if the generator voltage is at least 50 % of the secondary transformer rated voltage. Voltage and frequency controllers as well as the synchronization can be switched ON or OFF by configuration.

| Description o | Description of the additional condition                                         |  |  |  |  |
|---------------|---------------------------------------------------------------------------------|--|--|--|--|
| А             | Parameter "automatic idle control" is ON.                                       |  |  |  |  |
| В             | Parameter "automatic idle control" is OFF.                                      |  |  |  |  |
| С             | For the generator and for the busbar variables, the following must apply:       |  |  |  |  |
|               | - 50 % $V_{set}$ < voltage < 125 % $V_{set}$                                    |  |  |  |  |
|               | - 80 % $f_{rated}$ < frequency < 110 % $f_{rated}$                              |  |  |  |  |
| D             | For the busbar and for the mains variables, the following must apply:           |  |  |  |  |
|               | - 50 % $V_{set}$ < voltage < 125 % $V_{set}$                                    |  |  |  |  |
|               | - 80 % $f_{rated}$ < frequency < 110 % $f_{rated}$                              |  |  |  |  |
|               | If "Download and open GCB" is configured to "ON", "Enable GCB" must be enabled. |  |  |  |  |

Table 4-2: Operating conditions - idle control and synchronization - conditions

#### **Dead Bus Start**

Dead bus start: Output of a connect command for the circuit breaker without synchronization.

| Input signals                                             |            |                       |            | Function           | I. S                    |  |  |  |
|-----------------------------------------------------------|------------|-----------------------|------------|--------------------|-------------------------|--|--|--|
| Reply:<br>GCB is open                                     | Enable GCB | Reply:<br>MCB is open | Enable MCB |                    | Additional cond<br>tion |  |  |  |
| 1                                                         | 1          | 1                     | 0          | Dead bus start GCB | E                       |  |  |  |
| 1                                                         | х          | 1                     | 1          | Dead bus start MCB | F                       |  |  |  |
| 0: "OFF" / 1: "ON" / x: signal has no importance (0 or 1) |            |                       |            |                    |                         |  |  |  |

Table 4-3: Operating conditions - dead bus start

The busbar must be de-energized.

In the case that several MFR 2 were connected via CAN bus, a dead bus operation blocking of the GCB is active. That means that from the units which got a release for dead bus operation only that unit with the smallest generator number gets a switch-on command for the GCB. All other units do not issue a switch-on command. In this way it is prevented that asynchronous generator voltages were connected via CAN bus by simultaneous dead bus operation commands. The presence of the CAN bus connection has to be controlled in the display in automatic mode.

| Description of the additional condition |                                                                                           |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Е                                       | The parameter "Dead bus start generator breaker" is ON and the generator voltage and fre- |  |  |  |  |  |
|                                         | quency are within the configured limits.                                                  |  |  |  |  |  |
| F                                       | The parameter "Dead bus start mains breaker" is ON and is valid for the mains values:     |  |  |  |  |  |
|                                         | $-50 \% V_{set} < voltage < 125 \% V_{set}$                                               |  |  |  |  |  |
|                                         | - 42 Hz $\leq$ frequency $\leq$ 110 % f <sub>rated</sub>                                  |  |  |  |  |  |

Table 4-4: Operating conditions - dead bus start - conditions

#### **Isolated Operation**

**Isolated operation:** Generator voltage and frequency are adjusted to the configured set point values by raising and lowering the controller outputs for voltage and speed/frequency as required.

| Input signals                                                                                           | Function           | S                       |
|---------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| Isolated<br>operation ON<br>Reply:<br>GCB is open<br>Enable GCB<br>Reply :<br>MCB is open<br>Enable MCB |                    | Additional cond<br>tion |
| 0 0 x 1 0                                                                                               | no action          |                         |
| 1 0 x 1 0                                                                                               | Isolated operation |                         |

0: "OFF" / 1: "ON" / x: signal has no importance (0 or 1)

Table 4-5: Operating conditions - isolated operation

An isolated operation only takes place if the generator frequency is greater than 42 Hz. Voltage control only takes place if the generator voltage is at least 80 % of the secondary transformer rated voltage and the parameter "Voltage controller isolated operation" is enabled. Voltage, frequency, and synchronization control may be enabled or disable in the configuration menu.

#### **Mains Parallel Operation**

**Mains parallel operation:** The controller outputs raise and lower speed/frequency and voltage to adjust real power and power factor of the generator to the configured set point values.

| Input signals            |                                                           |            |                        |            | Function                 | IS 1-                   |  |  |  |
|--------------------------|-----------------------------------------------------------|------------|------------------------|------------|--------------------------|-------------------------|--|--|--|
| Isolated<br>operation ON | Reply:<br>GCB is open                                     | Enable GCB | Reply :<br>MCB is open | Enable MCB |                          | Additional cond<br>tior |  |  |  |
| х                        | 0                                                         | х          | 0                      | х          | Mains parallel operation |                         |  |  |  |
| 0: "O                    | 0. "OFF" / 1. "ON" / x. signal has no importance (0 or 1) |            |                        |            |                          |                         |  |  |  |

Table 4-6: Operating conditions - mains parallel operation

Mains parallel operation takes place only if the generator frequency is greater than 42 Hz. If during mains parallel operation the generator frequency falls below 50 % of the rated value, the relay "Command: open GCB" is activated.

## **Monitoring Blocking at Startup**

In order to prevent undesired triggering of the generator protection when stopping and starting the generator, the monitoring is only enabled when reaching a minimum generator frequency and the discrete input "Enable monitoring" is energized. The type and behavior of this connection is explained in the following diagram. This type of release is only valid for the following monitoring functions:

- Generator undervoltage
- Generator underspeed
- Reverse/reduced power

When the minimum frequency is reached or exceeded, this is indicated by closing the relay configured for this. If monitoring is enabled, the "Protection" LED on the front panel is illuminated.



Figure 4-5: Monitoring blocking at startup

## Load and/or Var Sharing

#### 

The control ensures load and/or var sharing proportional to the rated power of the generators under every operating condition (isolated operation in parallel with other gensets, or reverse synchronization of the busbar to the mains).

The controller can communicate with up to 8 generators with a maximum power rating of 16 MW each and 32 MW in the system. Any controller not in constant power/base load mode and that has the GCB closed will load and/or var share.

**Isolated operation in parallel:** Each controller participating in load/var sharing controls the generator set to which it is assigned in such a manner that the set frequency and the set voltage at the bus remain constant. This makes it imperative that the same frequency and voltage set points are configured for each controller. All controllers communicate via a CAN bus. This enables the controllers to adjust the real power generated by the generator while remaining within the rated power of the generator. A smaller generator will contribute less real power as compared to a large generator, but they will both be utilized to the same capacity factor. An example of this would be a 100KW generator and a 1000KW generator and a load of 825KW. The 100KW generator would contribute 750 KW or both generators would be at 75% of their rated capacity.

The reactive power will be allocated in a way that it is the same for all generators involved.

The parameter "active load share factor" can be used now to define the priority of the reference variable (frequency) for real power sharing. A higher percentage influences the control more towards frequency control. A lower percentage influences the control more towards real power sharing.

The parameter "reactive load share factor" can be used now to define the priority of the reference variable (voltage) for reactive power sharing. A higher percentage influences the control more towards voltage control. A lower percentage influences the control more towards reactive power sharing.

Synchronization of the busbar back to the mains: Distribution is carried out according to the type of isolated operation. The set point value for the bus frequency is determined by the mains frequency +  $df_{max}/2$ . Example: If  $df_{max} = 0.2$  Hz, this results for  $df_{max}/2 = 0.1$  Hz (i.e. in a system of 50 Hz, the busbar will be raised to 50.1 Hz). **Pre-requisites:** It is imperative that the rated system frequencies and the circuit breaker logic are set identically for all units participating in load/var sharing.

**Description of the interface for load/var sharing:** Load/var sharing is based on a multi-master-capable bus between the controls. This structure enables the parallel operation of up to 8 generators.

#### The following must be noted to ensure trouble-free operation of the CAN bus:

- 1. The maximum CAN bus length must not exceed 250 meters.
- 2. The CAN bus must be terminated at each end with terminating resistors that correspond to the wave impedance of the CAN bus cable (approx. 120 ohm).
- 3. The CAN bus must be of a linear structure. Dead-end feeders are not permissible.
- 4. The recommended cable for use as the CAN bus cable is a "Twisted-shielded-pair" (Ex.: Lappkabel Unitronic LIYCY (TP) 2×2×0.25, UNITRONIC-Bus LD 2×2×0.22).
- 5. The CAN bus cable must not be routed in the vicinity of high current power lines.

#### Schematic of the load/var sharing via CAN bus:

Each single unit compares the utilization factor of its generator with the mean utilization factor of all other generators. This control difference is compared with the control difference of the reference variable (e.g. frequency set point – measured frequency) and results a new reference variable.

Frequency control is carried out via the measured voltage/frequency of the voltage system.



Figure 4-6: Load/var sharing - schematic

## **Monitoring and Protection Functions**

#### 

## **Generator Protection**

The generator protection consists of the monitoring functions for generator over-/undervoltage, generator over-/underfrequency as well as overload, reverse/reduced load, unbalanced load, overcurrent and re-active power (lagging/leading). With the exception of the overload, the triggering of a watchdog leads to activation of the re-lay "Command: open GCB". Each watchdog must be enabled separately via configuration. Moreover, each watchdog can be assigned to one or more signal relays.

## **Mains Protection**

The mains protection consists of the monitoring functions for mains over-/undervoltage, mains over-/undervoltage as well as phase shift, asymmetry and df/dt monitoring (only PSVA package). The mains decoupling in triggering of a mains failure is continually active and can be set via the configuration on the relay "Command: open GCB" or the relay "Command: open MCB". Every watchdog must be enabled separately via the configuration. Moreover, every watchdog can be assigned to one or more signal relays.

## Alarm Class

The monitoring functions are divided into four alarm classes:

**F0 - Warning alarm -** This alarm does not lead to an interruption of the operation. An alarm message is displayed without a centralized alarm.

 $\rightarrow$  Alarm text.

- **F1 Warning alarm -** This alarm does not lead to an interruption of the operation. An alarm message is displayed and a centralized alarm will be output.
  - $\rightarrow$  Alarm text + flashing LED "Alarm" + Relay "Centralized alarm" (horn).
- **F2 Triggering alarm -** This alarm leads to a soft shutdown. A power reduction is performed prior to the GCB being opened. A coasting period is also carried out.
  - $\rightarrow$  Alarm text + flashing LED "Alarm" + Relay "Centralized alarm" (horn) + coasting.
- F3 Triggering alarm This alarm leads to the immediate opening of the GCB and a hard shutdown.
  - → Alarm text + flashing LED "Alarm" + Relay "Centralized alarm" (horn)+ immediate shutdown.
### **Internally Detected Alarms**

List of alarms determined internally depending on the monitored variables:

| Type of alarm                       | Alarm | Alarm text        | Relay output |
|-------------------------------------|-------|-------------------|--------------|
|                                     | class |                   | (terminal)   |
| Generator overfrequency             | F3    | Gen.Overfreq.     |              |
| Generator underfrequency            | F3    | Gen.Underfreq.    |              |
| Generator overvoltage               | F3    | Gen.Overvolt.     |              |
| Generator undervoltage              | F3    | Gen.Undervolt.    |              |
| Battery undervoltage                | F1    | Batt. Undervolt.  |              |
| Generator overload                  | F2    | Gen. Overload     |              |
| Generator reverse/reduced load      | F3    | Rev./red. load    |              |
| Mains overfrequency                 | F0    | Mains Overfreq.   |              |
| Mains underfrequency                | F0    | Mains Underfreq.  |              |
| Mains overvoltage                   | F0    | Mains Overvolt.   |              |
| Mains undervoltage                  | F0    | Mains Undervolt.  |              |
| Mains asymmetry                     | F0    | Asymmetry         |              |
| Mains phase shift                   | F0    | Phase shift       |              |
| Mains df/dt fault (PSVA)            | F0    | Fault df/dt       |              |
| Generator time-overcurrent, level 1 | F3    | Gen.Overcurrent 1 |              |
| Generator time-overcurrent, level 2 | F3    | Gen.Overcurrent 2 |              |
| Generator unbalanced load           | F3    | Unbalanced lo.    |              |
| Generator re-active power, lagging  | F3    | Lead.react.load   |              |
| Generator re-active power, leading  | F3    | Lagg.react.load   |              |
| Synchronization time fault          | F1    | Synchr.TimeContr  |              |
| Temperature 1, warning              | F1    | Temp 1 warning    |              |
| Temperature 1, shutdown             | F3    | Temp 1 tripping   |              |
| Temperature 1, wire break           | F0    | Temp 1 wire brk.  |              |
| Temperature 2, warning              | F1    | Temp 2 warning    |              |
| Temperature 2, shutdown             | F3    | Temp 2 tripping   |              |
| Temperature 2, wire break           | F0    | Temp 2 wire brk.  |              |
| Maintenance interval expired        | F1    | Maintenance       |              |
| Centralized alarm                   |       |                   |              |

Table 4-7: Alarms - text messages

#### Alarm Acknowledgement

By pressing the "ACK" push button, the output of the centralized alarm and the alarm messages on the LC display are acknowledged according to the following logic:

**Horn:** After 2 minutes the horn is reset regardless of the acknowledgement of an alarm. **Interface:** All internal alarms are communicated via the interface.

### NOTE

The control unit does not differentiate between short and long alarm acknowledgements when given through the interface. As soon as the acknowledgement bit is enabled via the interface, a "Long ac-knowledgement" will be performed. A "Short acknowledgement " via the interface is not possible.

#### Short acknowledgment (< 2.5 s)

#### Action

- The "ACK" push-button is pressed for 0.5 s < t < 2.5 s
- The terminal 36 is energized for 0.5 s < t < 2.5 s

#### Result

The "Alarm" LED changes from blinking to continually illuminated and the horn is silenced.

|                | Acknowledgment via                       |              |              |
|----------------|------------------------------------------|--------------|--------------|
| Operating mode | "ACK" button terminal 36 interface input |              |              |
| AUTO           | possible                                 | possible     | not possible |
| MANUAL         | possible                                 | not possible | not possible |

Table 4-8: Alarms - short acknowledgment

#### Long acknowledgment (>2.5 s)

#### Action

- The "ACK" push-button is pressed for > 2.5 s
- The terminal 36 is energized for t > 2.5 s
- The acknowledge bit is enabled via the interface

#### Result

An alarm cannot be acknowledged if the fault condition still exists. If the fault condition is no longer present:

- The "Alarm" LED turns off
- The F1, F2 and F3 alarm relays are reset
- The display messages are acknowledged

|                | Acknowledgment via                       |              |              |
|----------------|------------------------------------------|--------------|--------------|
| Operating mode | "ACK" button terminal 36 interface input |              |              |
| AUTO           | possible                                 | possible     | possible     |
| MANUAL         | possible                                 | not possible | not possible |

Table 4-9: Alarms - long acknowledgment

## Chapter 5. Display And Operating Elements

The pressure-sensitive membrane of the front panel consists of a plastic coating. All keys have been designed as touch-sensitive membrane switch elements. The display is a LC-display, consisting of 2 rows of 16 characters each, with indirect green lighting. The contrast of the display can be infinitely adjusted via a rotary potentiometer positioned on the left side of the control. The configuration plug is located on the left side of the unit as well. Please connect the direct configuration cable there (DPC).



## **Brief Description of LEDs and Push Buttons**

#### 

### LEDs

| No | Description   | Function                       |
|----|---------------|--------------------------------|
| 1  | V1            | Voltage L1                     |
| 2  | V2            | Voltage L2                     |
| 3  | V3            | Voltage L3                     |
| 4  | Test          | Configuration mode active      |
| 5  | Synchroscope  | Display of phase position      |
| 6  | V             | Generator voltage in volts     |
| 7  | kV            | Generator voltage in kilovolts |
| 8  | Protection    | Monitoring is active           |
| 9  | Alarm         | Alarm message present          |
| 10 | Gen CB - ON   | Reply: GCB is closed           |
| 11 | Mains CB - ON | Reply: MCB is closed           |

### Buttons

| No | Description  | Function                              |
|----|--------------|---------------------------------------|
| 12 | Message↓     | Advance to next screen                |
| 12 | Select       | Confirm selection                     |
| 13 | Display V↓   | Advance to next voltage display       |
| 13 | Digit↑       | Increase the digit                    |
| 14 | Clear        | Acknowledgement of alarm messages     |
| 14 | Cursor→/Test | Move cursor one position to the right |

### Others

| No | Description   | Function            |
|----|---------------|---------------------|
| 15 | LC Display    | LC Display          |
|    | Potentiometer | Adjust LCD contrast |

### LEDs

#### 

| 1, 2, 3 | <b>V1, V2, V3</b>       | Voltage display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Color. green            | The LEDs V1, V2, or V3 indicate the phase(s) of the displayed voltage. If<br>one LED is illuminated, the value indicated on the display is the wye (star)<br>voltage between the indicated phase and neutral. If two LEDs are illumi-<br>nated, the value indicated on the display is the delta voltage between the in-<br>dicated phases.                                                                                                                                                                            |
| 4       | Test                    | Configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Color: red              | The LED "Test" is flashing if configuration mode is active.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5       | -7% fn +7%              | Phase position / synchroscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | Color: red/yellow/green | The row of LEDs indicates the current phase position between the two volt-<br>ages indicated on the display. The green LED in the middle of the 15 LEDs<br>indicates that the measured phase angle between the voltage systems is less<br>than 12 ° electrical. The phase position is only displayed in the automatic<br>mode and only, if the difference between the frequency values is smaller<br>than 2 Hz and both voltages are within the specified permissible ranges.<br>These ranges are defined as follows: |
|         |                         | Frequency ranges80 to 110 % $f_{rated}$ Voltage ranges50 to 125 % $V_{rated}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                         | There are two different directions of rotation:<br>left → right . If the LEDs run from left to right, the generator frequency is<br>too high, i.e. the generator or the variable mains rotate too fast<br>right → left . If the LEDs run from right to left, the generator frequency is<br>too low, i.e. the generator respectively the variable mains ro-<br>tate too slow                                                                                                                                           |
| 6       | v                       | Generator voltage display in volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Color: green            | If the "V" LED is illuminated, the engineering unit of the voltage value in-<br>dicated on the display is volts [V].                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7       | kV                      | Generator voltage display in kilovolts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Color: green            | If the "kV" LED is illuminated, the engineering unit of the voltage value in-<br>dicated on the display is kilovolts [kV].                                                                                                                                                                                                                                                                                                                                                                                            |
| 8       | <b>Protection</b>       | Monitoring active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Color. green            | If the "Protection" LED is illuminated, the monitoring functions are enabled (refer to Monitoring Blocking at Startup on page 33).                                                                                                                                                                                                                                                                                                                                                                                    |
| 9       | Alarm                   | Alarm message present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | Color. Idd              | If the "Alarm" LED is illuminated, the unit has detected an alarm which is<br>processed according to the its alarm class. The message and the type of<br>alarm are indicated on the display. If this LED is flashing, an alarm occurred<br>with a group alarm. After a brief acknowledgment, this changes to continu-<br>ous illumination and the centralized alarm is ceased.                                                                                                                                        |

| 10 Gen CB - ON |               | Generator power circuit breaker is closed                                                                                                                                                           |
|----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Color: green  | The LED "Gen CB - ON" signals the response of the GCB. The LED lights up if the discrete input "Reply: GCB is open" is de-energized and will extinguish as soon as the discrete input is energized. |
|                |               |                                                                                                                                                                                                     |
| 11             | Mains CB – ON | Mains power circuit breaker is closed                                                                                                                                                               |

## **Push Buttons**

#### 

In order to facilitate the setting of the parameters the buttons are equipped with an "AUTOSCROLL" function while the controller is in the configuration mode. It permits the user to rapidly advance to the next setting and configuration screens, the digits, or the cursor position. The "AUTOSCROLL" function will only be enabled when the user presses and holds the corresponding buttons.

| 12 | Message↓ / Select                         | Message↓ / Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                           | <ul> <li>Automatic mode: Message↓ - By pressing this button, the user advances through the display of operating and alarm messages.</li> <li>Configuration: Select - By pressing this button, the user advances to the next configuration screen. If the value originally displayed has been changed via the "Digit↑" or "Cursor→/Test" push buttons, the newly set value is saved by pressing the "Select" push button once saves the newly set value. By pressing the button again, the user causes the system to advance to the next configuration screen.</li> </ul> |
| 13 | Display V $\downarrow$ / Digit $\uparrow$ | Display V↓ / Digit↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                                           | <ul> <li>Automatic mode: Display V↓ - By pressing this button, the user advances through the display of generator and mains voltages. The phase LEDs are illuminated accordingly.</li> <li>Configuration: Digit↑ - By pressing this button, the position at which the cursor is presently located is increased by one digit. The increase is restricted by the permissible limits (see list of parameters included in the appendix). If the highest permissible number has been reached, the number automatically returns to the lowest permissible number.</li> </ul>   |
| 14 | Clear / Cursor $\rightarrow$ /Test        | Clear / Cursor→/Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                           | <ul> <li>Automatic mode: <u>Clear</u> - Individual alarm messages are deleted by pressing this button provided the fault is no longer present.</li> <li>Configuration: <u>Cursor→/Test</u> - This button moves the cursor one position to the right. When the cursor reaches the extreme right position it may be returned to the extreme left position by pressing the "Cursor→/Test" button again.</li> </ul>                                                                                                                                                          |

## LC Display

#### 

15

LC-Display LC-Display

Performance values can be monitored from the two-line display, provided that the control is in automatic mode. In configuration mode, the individual parameters are displayed.

### Display In Automatic Mode (First Line of the Display: Measured Values)

| 000 | 0 | 00 | 000 |   |
|-----|---|----|-----|---|
|     |   |    |     | - |

#### Display in automatic mode, first line: measured current values

Display of the generator phase current values for each phase separately. If the slave pointer function is enabled, the maximum current values are displayed in this position.

### Display In Automatic Mode (Second Line of the Display: Measured Values)

| 0.00 |  |
|------|--|

#### Display in automatic mode, second line: measured voltage values

Display of the generator voltage in the "V/kV" field on the left. The "V1", "V2", and "V3" LEDs indicate the phase(s) of the displayed voltage. If one LED is illuminated, the value indicated on the display is the wye (star) voltage between the indicated phase and neutral. If two LEDs are illuminated, the value indicated on the display is the delta voltage between the indicated phases.

| <br>           |
|----------------|
| <br>xxxxxxxxxx |

#### Display in automatic mode, second line: operating and alarm messages

Display of operating and alarm messages in the "Operating and Alarm Messages" field on the right. Instead of "xxxxxxxxxx " the following measuring values are indicated:

Generator real power Generator power factor Generator real energy\* (positive, export) Generator real energy\* (negative, import) Generator lagging reactive energy\* (inductive) Generator leading reactive energy\* (capacitive) Actual set value for real power controller Maximum generator current (slave pointer) Mains voltage dependent on the "V1", "V2", and "V3" LEDs Mains real power (measured in single phase) Mains power factor Mains current Operating hours Remaining time until the next maintenance Start counter Battery voltage (supply voltage of the unit) Number of units connected on the CAN bus

(\* the display of the energy counter will be updated every 3 minutes)

----xxxxxxxxxxxxxxxx

The display screens are displayed one after the other by pressing the "Message $\downarrow$ " button. If no button is pushed for approximately 1 minute, the display returns to the initial display screen automatically. If alarms have occurred, their message text is displayed in the order of occurrence in the display before the basic screen. Please notice the maximum of 4 alarms that can be displayed! If more than 4 alarms are active at the same time, only the messages of the first four alarms can be displayed. During synchronization of the power circuit breakers, the basic screen is suppressed by the "Synchronization GCB" or "Synchronization MCB" message. The basic screen is displayed again after successful synchronization.

### Display in Automatic Mode (Second Line of the Display: Alarm Indication)

Alarm indication, bottom line

Refer to Internally Detected Alarms on page 37 for a list of all alarm messages.

## Chapter 6. Configuration

Configuration can be done using a PC and the PC program LeoPC1 via the serial interface or via the front panel push buttons and the front panel LC display. If direct configuration via a PC is selected, the following baud rate is to be used:

• Configuration via direct configuration plug = 9,600 Baud (8 Bit, no parity, 1 stop bit)



### CAUTION

Please note that configuration only should be done while the system is not in operation.



## NOTE

A list of all parameters may be found in the appendix of this manual.

You can advance through the individual parameter screens if you are in configuration mode (simultaneously pressing of "Digit<sup>†</sup>" and "Cursor<sup>+</sup>" push buttons permits access to the configuration mode) by using the "Select" button. If you press and hold the "Select" push button, the scroll function will be activated, allowing for the parameter screens to be advanced through more rapidly. The control unit will permit the operator to reverse up to four previous screens (exception: it is not possible to reverse from the first parameter to the last parameter or to backup through the service screens). To perform the reverse function through the parameter screens, the "Select" and "Cursor<sup>+</sup>" push buttons must be pressed and released simultaneously. The control unit will revert to automatic mode if an entry isn't performed, a change made, or any other action performed for 120 seconds.



### NOTE

There are two different hardware versions described in this operating manual: A 100 V version [1] and a 400 V version [4]. The versions vary as far as the configuration screens and the parameter input ranges are concerned. The two types are differentiated by indicating the voltage: ([1] ... or [4] ...).

## **Basic Data**

#### 

Software version X.xxxx

Software version

This screen displays the software version loaded into the control (the last two xx are for software revisions which do not affect the function of the unit).

## **Configuration Access**

#### 

### Password

The unit is equipped with a three-level code and configuration hierarchy, which allows different user access to the control. A distinction is made between:

#### Code level CS0 (User Level)

Factory password = none This code level allows for monitoring of the system and does not permit access to the parameters. Configuration is blocked.

#### Code level CS1 (Basis Service Level)

This code level entitles the user to change selected parameters, like setting Bar/PSI, °C/°F, and clock adjustment. Changing a password is not permitted at this level. This password expires two hours after entering the password and the user is returned to the CS0 level.

#### Code level CS2 (Commissioning Level)

Allows direct access to all parameters (displaying and changing). In addition, the user may also set the password for levels CS1 and CS2. This password expires two hours after entering the password and the user is returned to the CS0 level.

## NOTE

Once the code level is entered, access to the configuration menus will be allowed for two hours or until another password is entered into the control. If a user needs to exit a code level, then code level CS0 should be entered. This will block any configuration of the control. A user may return to CS0 by allowing the entered password to expire after two hours or by changing any one digit on the random number generated on the password screen and entering it into the unit.

Factory password = "0 0 0 1"

### Factory password = "0 0 0 2"



### NOTE

The following configuration screen "Enter code number" only appears if the parameter "Password Protection" is configured "ON" (see below).

| Enter code   | Enter code number                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000 to 9999                                                                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| number 0     | Upon enabling the configuration mode, the user is required to<br>number, which identifies the various users. The displayed nu<br>domly generated number (RN). If the random number is confi<br>"Select" button without being changed, the current level of ac<br>Upon entering either a level 1 or level 2 access code, the corr<br>cess is granted. If an incorrect access code is entered the confic<br>code level 0 and all access is blocked until a code level 1 or 2<br>tered. | b enter an access code<br>mber XXXX is a ran-<br>firmed by pressing the<br>ccess maintained.<br>responding level of ac-<br>trol unit changes to<br>2 access code is en- |
| Password     | Password protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ON/OFF                                                                                                                                                                  |
| Protection   | ON ON Password protection is enabled. Configuration<br>entering the appropriate password (Code level<br>code number has been entered, configuration is<br>OFF Password protection is disabled. Access to con<br>permanently set to code level 2 and the code nu<br>This parameter can only be changed if the code<br>level 2 has been entered.                                                                                                                                       | access is enabled by<br>1/2). If an incorrect<br>s blocked.<br>figuration screens is<br>umber is not queried.<br>e number of code                                       |
| Change Pass  | swords                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         |
| Define level | 1 Define level 1 password                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000 to 9999                                                                                                                                                            |
| code 0       | This screen appears only when the level 2 password has been<br>ing the digits into this screen, the code level for level 1 (clien<br>this code, the user only has the access rights assigned to this<br>This code level (CS) is preset to $CS1 = 0\ 0\ 0\ 1$                                                                                                                                                                                                                         | t entered. After enter-<br>t) is set. After entering<br>code level.                                                                                                     |

| code<br>Define 1<br>code | 0000    | This screen appears only when the level 2 password has been<br>ing the digits into this screen, the code level for level 1 (clien<br>this code, the user only has the access rights assigned to this of<br>This code level (CS) is preset to $CS1 = 0\ 0\ 0\ 1$ | entered. After enter-<br>t) is set. After entering<br>code level.         |
|--------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Define                   | level 2 | Define level 2 password                                                                                                                                                                                                                                         | 0000 to 9999                                                              |
| code                     | 0000    | This screen appears only when the level 2 password has been<br>ing the digits into this screen, the code level for level 2 (techr<br>tering the code, the technician has the access rights with whic                                                            | entered. After enter-<br>nician) is set. After en-<br>ch he was assigned. |

This code level (CS) is preset to CS2 = 0002

## **Direct Configuration**

#### 

## NOTE

To carry out direct configuration, you require a direct configuration cable DPC (P/N 5417-557), the LeoPC1 program (supplied with the cable) and the corresponding configuration files. Please consult the online help installed when the program is installed for a description of the PC program and its setup.

For configuration of the unit via PC program please proceed as follows:

- Install the PC program on your laptop/PC according to the installation manual.
- Before the end of the installation you are requested to select the language with which you want to start the PC program. You can change the language at any time. The selection of the language refers only to language with which the menus and subprograms of the PC program works. This setting will not change the language of the control unit being configured.
- After the installation of the PC program reboot your laptop/PC.
- Establish the connection between your laptop/PC and the unit via the DPC. Plug one side to the configuration plug of the unit and the other side to the COM1 port of your laptop/PC (other possibilities are described in the installation manual).
- You may start the PC program as follows:
  by "Start/Program/Woodward/LeoPC" (starting at version 3.1.xxx), or
  by a double click on a file ending ".cfg" in the subdirectory "LeoPC".
- After the PC program was started, establish the communication by pressing the "F2" button. This will establish a data link between the unit and the laptop/PC.
- Start the sub program "Device Parameterization" and adjust the parameter of the unit to your application using this manual.

| Direct para. | Direct configuration                                                                                                                                                                                                                                                                                                                                   | YES/NO                                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YES          | <ul> <li>YESConfiguration via the configuration port is conditions must be met in order to carry or rect configuration cable:</li> <li>A connection must be established via the between the unit and the PC</li> <li>the Baud rate of the PC program must be the corresponding configuration file mu "xxxx-xxxx-yyy-zz.asm", initiated by x</li> </ul> | is enabled. The following<br>out configuration via the di-<br>ne direct configuration cable<br>be set to 9,600 Baud<br>ust be used (file name:<br>xxxx-xxxx-yyy-zz.cfg) |

NO.....Configuration via the direct configuration cable is disabled.

## **Service Display**

#### 

| Service display | Service display                                                                                                   | ON / OFF       |
|-----------------|-------------------------------------------------------------------------------------------------------------------|----------------|
| ON              | <b>ON</b> The following three screens are displayed. The service of tended to assist when commissioning the unit. | lisplay is in- |

**OFF**..... The screens of the service display are not displayed.

### **Double Voltage/Frequency Display for Synchronous Generators**

| в      | 000V             | 00.00Hz            | Busbar / generator                                                                          |
|--------|------------------|--------------------|---------------------------------------------------------------------------------------------|
| G      | 000V             | 00.00Hz            | The busbar and generator voltage and frequency are displayed. The phase position            |
| B<br>G | 00.0kV<br>00.0kV | 00.00Hz<br>00.00Hz | ween generator and busbar is indicated by the synchroscope.<br>Busbar voltage and frequency |
|        |                  |                    | G Generator voltage and frequency                                                           |
| м      | 000V             | 00.00Hz            | Mains / busbar                                                                              |
| в      | 000V             | 00.00Hz            | The mains and busbar voltage and frequency are displayed. The phase position be-            |

|                  | The mains and buscar voluge and nequency are asphayed    |
|------------------|----------------------------------------------------------|
| M 00.0kV 00.00Hz | tween mains and busbar is indicated by the synchroscope. |
| B 00.0kV 00.00Hz | M Mains voltage and frequency                            |

|   |          | 0         |     | 1     | 2    |
|---|----------|-----------|-----|-------|------|
| B | Busbar 7 | voltage a | and | frequ | ency |

### **Double Voltage/Frequency Display for Asynchronous/Induction Generators**

| Remanence00.00Hz | Generator / remanence voltage                                                                                                                                   |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Gen:000V 00.00Hz | The generator and remanence voltage and frequency are displayed.<br><b>Remanence</b> Frequency of the remanence voltage<br><b>Gen</b>                           |  |  |
| Mains000V00.00Hz | Mains / remanence voltage                                                                                                                                       |  |  |
| Remanence00.00Hz | The mains and remanence voltage and frequency are displayed.<br><b>Mains</b> Mains voltage and frequency<br><b>Remanence</b> Frequency of the remanence voltage |  |  |

### **Relay States**

| Rel.: | MCB | Power circuit breal                    | ker states and relay states of the co                                                                                       | ntroller       |  |
|-------|-----|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|--|
| f V   | GCB | The display forwa nals to the power of | The display forwards the current state of the three-position controller and the sig-<br>nals to the power circuit breakers: |                |  |
|       |     | <b>f</b> +                             | raise frequency                                                                                                             | terminal 8/9   |  |
|       |     | -                                      | lower frequency                                                                                                             | terminal 8/10  |  |
|       |     | U+                                     | raise voltage                                                                                                               | terminal 11/12 |  |
|       |     | -                                      | lower voltage                                                                                                               | terminal 11/13 |  |
|       |     | <b>MCB</b> On                          | Connect pulse for the MCB                                                                                                   | terminal 16/17 |  |
|       |     | Off                                    | Disconnect pulse for the MCB                                                                                                | terminal 39/40 |  |
|       |     | GCBOn                                  | Connect pulse for the GCB                                                                                                   | terminal 14/15 |  |
|       |     | Оп                                     | Disconnect pulse for the GCB                                                                                                | terminal 41/42 |  |

Generator number

0

### **Generator Number**

#### 

#### Generator number

1 to 8

If several generators are available and these are coupled via a bus, a different number must be assigned to each generator for differentiation purposes. The generator number 1 should be assigned even in the case of individual units. This number is also used to generate the CAN ID. If the unit is equipped with Modbus , this number is conform with the Slave address.

## **Change Relay Assignment**

#### 

| Change relay-    | Change relay assignment?                                                                                                                                                                                                   | YES / NO                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| function? YES    | This parameter permits the user to change how the relay outputs are Refer to the list of parameters.                                                                                                                       | configured.                                                          |
|                  | <b>YES</b>                                                                                                                                                                                                                 | may define the screens are dis-                                      |
|                  | <b>NO</b> The relays are configured with the factory default sett sequent screens are not displayed.                                                                                                                       | tings. The sub-                                                      |
| Funct. rel. 1234 | Function of the relays 1, 2, 3, and 4                                                                                                                                                                                      | E / D                                                                |
| (R=releases)EEEE | The individual relays may be configured as either E=Energized (No contacts) or D=De-energized (Normally Closed contacts).                                                                                                  | rmally Open                                                          |
|                  | <ul> <li>E</li></ul>                                                                                                                                                                                                       | acts. The relay<br>has tripped.<br>hacts. The relay<br>ssigned moni- |
|                  | <b>NOTE</b> The signal output is physically always configured as E (N.                                                                                                                                                     | 0.).                                                                 |
| Relay "open GCB" | Logic for the relay "Command: open GCB"                                                                                                                                                                                    | E / D                                                                |
| LOGIC E          | <b>E</b> The relay is configured as normally open (N.O.) contained as normally open (N.O.) contained as normally open (N.O.).                                                                                              | acts. The relay                                                      |
|                  | <b>D</b>                                                                                                                                                                                                                   | tacts. The relay<br>CB is to be<br>his way the out-                  |
| Relay "open MCB" | Logic for the relay "Command: open MCB"                                                                                                                                                                                    | E / D                                                                |
| Logic E          | <b>E</b> The relay is configured as normally open (N.O.) containing will energize only if the MCB is to be opened.                                                                                                         | acts. The relay                                                      |
|                  | <b>D</b> The relay is configured as normally closed (N.C.) cor<br>is always energized and will only de-energize if the N<br>opened. The contact is closed in the normal state. In t<br>put can be configured as fail-safe. | Itacts. The relay<br>ICB is to be<br>his way the out-                |

| Open MCB via   | Activation of t        | he control function "Command: open MCB"                                                                                                                                                    | ON / OFF                                    |
|----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| release MCB ON | ON The mable tion "Ena | The relay "Command: open MCB" is triggered if the inp<br>able MCB" is de-energized or if an activated mains mon<br>tion energizes. In this way the MCB can be opened usin<br>"Enable MCB". | ut "En-<br>itoring func-<br>g the signal    |
|                | OFF                    | The relay "Command: open MCB" is triggered exclusive<br>vated mains monitoring function energizes. The input "F<br>has no effect on the function of the relay "Command: op                 | ely if an acti-<br>Enable MCB"<br>oen MCB". |

## Auto Acknowledgement

#### 

| Auto-acknowledge | Auto-acknowledgement relay                                                                                                                  | ON / OFF                             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| relay ON         | <b>ON</b> The relays de-energize if the criterion for triggering sent.                                                                      | g is no longer pre-                  |
|                  | OFF The relays remain energized until this is acknowled<br>"Messages auto-acknowledgement" does not appea                                   | lged. The screen<br>r.               |
| Auto-acknowledge | Messages auto acknowledgment                                                                                                                | ON / OFF                             |
| messages ON      | This screen appears only if the parameter "Auto-acknowledge rel<br>ON.                                                                      | ay" is configured                    |
|                  | <b>ON</b> After the alarm condition is no longer detected, the display is deleted.                                                          | message on the                       |
|                  | <b>OFF</b> The alarm message remains in the display after the no longer detected until manually cleared. The substitution is not displayed. | fault condition is sequent screen of |
| Acknowledge      | Clear displayed message delay                                                                                                               | 1 to 99 s                            |
| message aft. 00s | This screen appears only if the parameter "Auto-acknowledge rel<br>ON.                                                                      | ay" is configured                    |

Alarm messages, which have been enabled, will be acknowledged after this configured delay time expires. This delay will initiate once the measure value exceeds/falls below the threshold limit +/- the hysteresis

## **Configure Basic Settings**

#### 

| Generator nom.   | Rated generator frequency                                                                                                                                                                                                 | 48.0 to 62.0 Hz                                                                                 |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| frequency=00.0Hz | Enter the rated frequency of the generator which in most cases is 50 Hz or 60 Hz.                                                                                                                                         |                                                                                                 |  |
| Gen. voltage     | Primary generator voltage                                                                                                                                                                                                 | 0.050 to 65.000 kV                                                                              |  |
| primary 00.000kV | The primary generator voltage is set here in primary voltages on the display. In the case a measurement transformer, 00.400 kV must                                                                                       | a kV. The entry is used to output the of measured voltages of 400 V without st be set here.     |  |
| Gen. voltage     | Secondary generator voltage                                                                                                                                                                                               | [1] 50 to 125 V, [4] 50 to 480 V                                                                |  |
| secondary 000V   | The secondary generator voltage is set here in V. This entry serves to indicate the primary voltages in the display. In the case of measured voltages of 400 V without a measurement transformer, 400 V must be set here. |                                                                                                 |  |
| Busb. voltage    | Primary busbar voltage                                                                                                                                                                                                    | 0.050 to 65.000 kV                                                                              |  |
| primary 00.000kV | The primary busbar voltage is set here in kV<br>mary voltages on the display. In the case of<br>measurement transformer, 00.400 kV must                                                                                   | V. The entry is used to output the pri-<br>measured voltages of 400 V without a<br>be set here. |  |
| Busb. voltage    | Secondary busbar voltage                                                                                                                                                                                                  | [1] 50 to 125 V, [4] 50 to 480 V                                                                |  |
| secondary 000V   | The secondary busbar voltage is set here in primary voltages in the display. In the case a measurement transformer, 400 V must be                                                                                         | V. This entry serves to indicate the of measured voltages of 400 V without set here.            |  |
| Mains voltage    | Primary mains voltage                                                                                                                                                                                                     | 0.050 to 65.000 kV                                                                              |  |
| primary 00.000kV | The primary mains voltage is set here in kV<br>mary voltages on the display. In the case of<br>measurement transformer, 00.400 kV must                                                                                    | V. The entry is used to output the pri-<br>reasured voltages of 400 V without a<br>be set here. |  |
| Mains voltage    | Secondary mains voltage                                                                                                                                                                                                   | [1] 50 to 125 V, [4] 50 to 480 V                                                                |  |
| secondary 000V   | The secondary mains voltage is set here in<br>mary voltages in the display. In the case of<br>measurement transformer, 400 V must be so                                                                                   | V. This entry serves to indicate the pri-<br>measured voltages of 400 V without a<br>et here.   |  |

Page 52/108

| VoltMeasuring                                                                           | Voltage measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phase to phase / Phase-neutral                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This screen only affects the display. The monitoring screens are defined further below. | <ul> <li>Phase to phase The electrical system (generator, only the three phases (without a lug (terminal 0) will not be conn voltages are indicated in the disp</li> <li>Phase-neutral The electrical system (generator, the three phases of a particular)</li> </ul>                                                                                                                                                                                                                                                                                             | , busbar and mains) consists of<br>neutral conductor). The neutral<br>lected. Only the phase-phase<br>blay.<br>, busbar and mains) consists of                                                                                                                                                                                                   |
|                                                                                         | (nal 0) must be connected. The pl<br>phase-neutral voltages are indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hase-phase voltages and the ated in the display.                                                                                                                                                                                                                                                                                                 |
| Current transf.<br>Generator 0000/0                                                     | The input of the current transformer ratio is necess<br>of the actual monitored value. The current transfor<br>at least 60% of the secondary current rating can be<br>system is at 100% of operating capacity (i.e. at 100<br>should output 3A). If the current transformers are a<br>the output is lower, the loss of resolution may caus<br>and control functions and may affect the functiona<br>The control may be ordered with either/1 A or/<br>The CT inputs will dictate how this parameter is di-<br>tion about the current transformers inputs may be f | ary for the indication and control<br>mers ratio should be selected so<br>measured when the monitored<br>0% of system capacity a 5A CT<br>sized so that the percentage of<br>se inaccuracies in the monitoring<br>lity of the control.<br>75 A current transformer inputs.<br>isplayed on the control. Informa-<br>found on the unit data plate. |

{x} = 1 ...... MFR2Sx1B/xxx = Current transformer with ../1 A rated current
{x} = 5 ...... MFR2Sx5B/xxx = Current transformer with ../5 A rated current

### NOTE

i

# The following parameter is only available for units with a software version of 3.5018 or higher. Units with a software version up to 3.5017 act as if "3" would be configured here.

| ower | Power display format                                                                                                                                                                                                                                                                 | 1/2/3/4/5/6                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|      | The format for the power display and (bus) transmiss<br>This parameter enables to find a setting, which gives<br>able to display the maximum value. The display form<br>power value is exceeded, which is calculated from the<br>ing to the following formula:<br>S = UGNIPPIM * 1/2 | tion can be configured here.<br>enough resolution while being<br>nat changes when an apparent<br>e transformer settings accord- |
|      | S = OGNPRIM * IGNPRIM * VS<br>UGNPRIM = generator voltage transformer primary                                                                                                                                                                                                        | setting (Gen_voltage primary)                                                                                                   |
|      | IGNPRIM = generator current transformer setting (C                                                                                                                                                                                                                                   | urrent transf. Generator)                                                                                                       |
|      | <b>NOTE</b> If this parameter is configured for a higher re values (above the calculated apparent power) might b ever, this parameter does not affect the monitoring fu                                                                                                              | esolution (higher value), large<br>be displayed incorrectly. How-<br>inctions and analog outputs.                               |
|      | <b>1</b> 00.0k [W/VA/var] (S up to 10 kVA)                                                                                                                                                                                                                                           |                                                                                                                                 |
|      | 0000k [W/VA/var] (S from 10 kVA up                                                                                                                                                                                                                                                   | o to 1000 kVA)                                                                                                                  |
|      | 00.0M [W/VA/var] (S from 1000 kVA                                                                                                                                                                                                                                                    | up to 10 MVA)                                                                                                                   |
|      | 000M [W/VA/var] (S from 10 MVA)                                                                                                                                                                                                                                                      |                                                                                                                                 |
|      | 200.0k [W/VA/var] (S up to 20 kVA)                                                                                                                                                                                                                                                   |                                                                                                                                 |
|      | 0000k [W/VA/var] (S from 20 kVA up                                                                                                                                                                                                                                                   | o to 2000 kVA)                                                                                                                  |
|      | 00.0M [W/VA/var] (S from 2000 kVA                                                                                                                                                                                                                                                    | up to 20 MVA)                                                                                                                   |
|      | 000M [W/VA/var] (S from 20 MVA)                                                                                                                                                                                                                                                      |                                                                                                                                 |
|      | <b>3</b> 00.0k [W/VA/var] (S up to 30 kVA)                                                                                                                                                                                                                                           |                                                                                                                                 |
|      | 0000k [W/VA/var] (S from 30 kVA up                                                                                                                                                                                                                                                   | to 3000 kVA)                                                                                                                    |
|      | 00.0M [W/VA/var] (S from 3000 kVA                                                                                                                                                                                                                                                    | up to 30 MVA)                                                                                                                   |
|      | 000M [W/VA/var] (S from 30 MVA)                                                                                                                                                                                                                                                      |                                                                                                                                 |
|      | <b>4</b> 00.0k [W/VA/var] (S up to 40 kVA)                                                                                                                                                                                                                                           |                                                                                                                                 |
|      | 0000k [W/VA/var] (S from 40 kVA up                                                                                                                                                                                                                                                   | to 4000 kVA)                                                                                                                    |
|      | 00.0M [W/VA/var] (S from 4000 kVA                                                                                                                                                                                                                                                    | up to 40 MVA)                                                                                                                   |
|      | 000M [W/VA/var] (S from 40 MVA)                                                                                                                                                                                                                                                      |                                                                                                                                 |
|      | <b>5</b> 00.0k [W/VA/var] (S up to 50 kVA)                                                                                                                                                                                                                                           |                                                                                                                                 |
|      | 0000k [W/VA/var] (S from 50 kVA up                                                                                                                                                                                                                                                   | o to 5000 kVA)                                                                                                                  |
|      | 00.0M [W/VA/var] (S from 5000 kVA                                                                                                                                                                                                                                                    | up to 50 MVA)                                                                                                                   |
|      | 000M [W/VA/var] (S from 50 MVA)                                                                                                                                                                                                                                                      |                                                                                                                                 |
|      | 600.0k [W/VA/var] (S up to 60 kVA)                                                                                                                                                                                                                                                   |                                                                                                                                 |
|      | 0000k [W/VA/var] (S from 60 kVA up                                                                                                                                                                                                                                                   | o to 6000 kVA)                                                                                                                  |
|      | 00.0M [W/VA/var] (S from 6000 kVA                                                                                                                                                                                                                                                    | up to 60 MVA)                                                                                                                   |
|      | 000M [W/VA/var] (S from 60 MVA)                                                                                                                                                                                                                                                      | ·                                                                                                                               |

Example:

 $\overline{S} = U\overline{GNPRIM} * I\overline{GNPRIM} * \sqrt{3} = 10 \text{ kV} * 200 \text{ A} * \sqrt{3} = 3,46 \text{ MVA}$ If this parameter is configured to "3" (default), the power format is 00.0 MW, if it is configured to "4", it is 0000 kW.

| Current transf.                 | Mains current transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 to 6,900/{x} A                                                                                                                                                                                            |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current transf.<br>Mains 0000/0 | The input of the current transformer ratio is necessary for the in<br>of the actual monitored value. The current transformers ratio sh<br>at least 60% of the secondary current rating can be measured will<br>system is at 100% of operating capacity (i.e. at 100% of system<br>should output 3A). If the current transformers are sized so that t<br>the output is lower, the loss of resolution may cause inaccuracie<br>and control functions and may affect the functionality of the con-<br>The control may be ordered with either/1 A or/5 A current t<br>The CT inputs will dictate how this parameter is displayed on the<br>tion about the current transformers inputs may be found on the target<br>$\{x\} = 1$ MFR2Sx1B/xxx = Current transformer with/1 A<br>$\{x\} = 5$ MFR2Sx5B/xxx = Current transformer with/5 A | dication and control<br>ould be selected so<br>hen the monitored<br>capacity a 5A CT<br>he percentage of<br>es in the monitoring<br>ntrol.<br>ransformer inputs.<br>he control. Informa-<br>unit data plate. |
| Power measuring                 | Generator power measurement one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -phase / three-phase                                                                                                                                                                                         |
| Gen. XXXXXXXXXX                 | <b>one-phase</b> The calculation of the real power is made taking is<br>rent in phase L1 and the external conductor voltage<br>power then is calculated as follows:<br>$P = 3 \times I_{L1} \times V_{L1-L2} \times power factor.$<br><b>three-phase</b> The calculation of real power is made taking into<br>conductor currents and voltages as real-time effect<br>urement.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nto account the cur-<br>ge $V_{L1-L2}$ . The<br>account all external<br>trive value meas-                                                                                                                    |
| Nomnial power                   | Generator rated power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 to 32,000 kW                                                                                                                                                                                               |
| Gen. = 0000kW                   | The rated real power of the generator is to be entered here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |

## **Configure Controller**

#### 



### CAUTION

An incorrect entry may lead to uncontrolled actions of the governor and may destroy the automatically regulated generator!

#### Controller Shutoff for Negative Load Jumps (Only with Three-Position Controllers)

The following function may be used to suppress the set point adjustment via the controller in the event of great load jumps. In this way a subordinate controller is given time to compensate for the load jump.

| Controller disc. | Controller shutoff in the event of negative load jumps                                                                                                                                                    | ON / OFF                                  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| neg. load j. ON  | <ul> <li>ONIf a negative load jump is determined, the frequency and trollers are shut down in isolated/no-load operation. The screens are displayed.</li> <li>OFF</li></ul>                               | l voltage con-<br>subsequent<br>s of this |
| Admissible act.  | Permissible jump in real power                                                                                                                                                                            | 10 to 80 %                                |
| power jump = 00% | Permissible negative abrupt change in the generator real power in rela<br>generator rated power. If the load shifts abruptly by an amount larger<br>here, the controllers are shut down for the set time. | tion to the<br>than specified             |
| Controller dis-  | Controller shutoff in the event of real power jump for                                                                                                                                                    | 1 to 99 s                                 |
| connection 00s   | In case of a load jump, the controllers are shut off for the duration set                                                                                                                                 | here.                                     |
|                  | Load Admiss. actual power jump = 00%                                                                                                                                                                      | Time/s                                    |
|                  | Speed/fpm                                                                                                                                                                                                 |                                           |

Controller active

Controller inactive Contr.switch off

00s

for

Time/s

Time/s

### Shutdown

I

| Download and |    | Shutdown (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON / OFF                                 |
|--------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| open GCB     | ON | <ul> <li>ON The generator will be as soon as "Enable GCB" is de-energing results in an automatic power reduction and subsequently the ing of the GCB via activation of the relay "Command: open the unit participates in load sharing, this is terminated.</li> <li>OFF De-energizing "Enable GCB" during operation has no effective operation of the section of the sect</li></ul> | ized. This<br>ie open-<br>GCB". If<br>t. |
|              |    | OFF De-energizing "Enable GCB" during operation has no effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t.                                       |

### Idle Control

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Controll in no-<br>load oper. ON | no- Autor | natic idle control | ON / OFF                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| load oper. ON       ON         ON       The control of voltage and frequency in idle operation is carried out independent of the state of the command "Enable GCB" (terminal 3) (refer to Operating Conditions on page 30).         OFF.       Additional condition for a control of voltage and frequency in idle operation is the state of "Enable GCB" (terminal 3). Take care that by energizing terminal 3 the synchronization for the GCB is also enabled (refer to Operating Conditions on page 30). |                                  | ON ON     |                    | eration is carried out<br>e GCB" (terminal 3)<br>I frequency in idle<br>I 3). Take care that by<br>e GCB is also en-<br>). |

### **Frequency Controller**

#### **Three-Position Controller**

tion.

| Freq. controller | Frequency controller                                                                                                                                                                                                                                                                                                                                                           | ON / OFF                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ON               | <ul> <li>ONThe generator frequency is controlled. The generator controlled in various manners depending on the totion / synchronization). The subsequent screens of displayed.</li> <li>OFFNo control is carried out and the subsequent screen are not displayed.</li> </ul>                                                                                                   | ator frequency is<br>ask (isolated opera-<br>of this function are<br>ens of this function                                                 |
| Generator freq.  | Generator set point frequency                                                                                                                                                                                                                                                                                                                                                  | 48.0 to 62.0 Hz                                                                                                                           |
| f set = 00.0Hz   | The generator set point frequency is entered here. This is require<br>controller in isolated and idle operation.                                                                                                                                                                                                                                                               | red for the frequency                                                                                                                     |
| Freq. controller | Frequency controller insensitivity                                                                                                                                                                                                                                                                                                                                             | 0.02 to 1.00 Hz                                                                                                                           |
| Insens. = 0.00Hz | <ul> <li>Idle/Isolated operation: The frequency is controlled in such a adjusted state, the actual value deviates from the setting (configured set point) by the set sensitivit</li> <li>Synchronization: The generator frequency is controlled in such its adjusted state, the differential frequency reach value at most. The mains or busbar frequency is value.</li> </ul> | manner that, in its<br>set point frequency<br>y value at most.<br>h a manner that, in<br>nes the set sensitivity<br>used as the set point |
| Freq. controller | Minimum frequency controller On period                                                                                                                                                                                                                                                                                                                                         | 10 to 250 ms                                                                                                                              |
| Time pulse>000ms | The minimum ON period of the relay should be selected in suc<br>downstream adjustment facility responds reliably to the pulse t<br>the set time. The smallest possible time must be set in order to<br>control behavior.                                                                                                                                                       | h a manner that the<br>hat corresponds to<br>ensure optimum                                                                               |
| Freq. controller | Frequency controller gain                                                                                                                                                                                                                                                                                                                                                      | 0.1 to 99.9                                                                                                                               |
| Gain Kp=00.0     | The amplification factor $K_p$ affects the turn-on time of the relay factor, the operating time can be increased in the event of a cer                                                                                                                                                                                                                                         | 7. By increasing the tain control devia-                                                                                                  |

## Voltage Controller (MFR 2S)

### **Three-Position Controller**

| Volt. controller | Voltage controller                                                                                                                                                                                                                                                             | ON / OFF                                                                                                                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ON               | <ul> <li>ON Generator voltage control is carried controlled in various manners depe operation / synchronization). The seare displayed.</li> <li>OFF Control is not carried out, and the seare not displayed.</li> </ul>                                                        | l out. The generator voltage is<br>nding on the task (idle / isolated<br>ubsequent screens of this function<br>ubsequent screens of this function                                                                               |
| Volt controller  | Voltage controller isolated mode                                                                                                                                                                                                                                               | ON / OFF                                                                                                                                                                                                                        |
| Isol. oper. ON   | <b>ON</b> The voltage controller is enabled in <b>OFF</b> The voltage controller is disabled in                                                                                                                                                                                | isolated operation.<br>n isolated operation.                                                                                                                                                                                    |
| Gen. voltage     | Generator set point voltage                                                                                                                                                                                                                                                    | [1] 90 to 125 V; [4] 200 to 480 V                                                                                                                                                                                               |
| V set = 000V     | The set point of the generator voltage is required<br>or isolated operation.                                                                                                                                                                                                   | for the voltage controller in idle                                                                                                                                                                                              |
| Setpoint ramp    | Voltage controller set point ramp                                                                                                                                                                                                                                              | 1 to 400 V/s                                                                                                                                                                                                                    |
| V set = 000V/s   | A change in set point is supplied to the controller<br>is used to alter the rate at which the controller mo<br>more rapidly the change in the set point is to be co<br>input here must be.                                                                                     | via a ramp. The slope of the ramp<br>difies the set point value. The<br>arried out, the greater the value                                                                                                                       |
| Volt. controller | Voltage controller insensitivity                                                                                                                                                                                                                                               | [1] 0,1 to 15,0 V, [4] 0,5 to 60,0 V                                                                                                                                                                                            |
| Insens. 00.0V    | Idle/Isolated operation: The voltage is controlled<br>justed state, the actual value deviated<br>ting (configured set point) by the set<br>Synchronization: The generator voltage is control<br>adjusted state, the differential volta<br>at most. The mains or busbar voltage | d in such a manner that, in its ad-<br>es from the set point voltage set-<br>et sensitivity value at most.<br>olled in such a manner that, in its<br>ge reaches the set sensitivity value<br>ge is used as the set point value. |
| Volt. controller | Minimum voltage controller ON period                                                                                                                                                                                                                                           | 10 to 250 ms                                                                                                                                                                                                                    |
| Time pulse>000ms | The minimum ON period of the relay should be s<br>downstream adjustment facility responds reliably<br>cording to the set time. The smallest possible time<br>optimum control behavior.                                                                                         | elected in such a manner that the<br>to the pulse that has been set ac-<br>e must be set in order to ensure                                                                                                                     |
| Volt. controller | Voltage controller gain factor                                                                                                                                                                                                                                                 | 0.1 to 99.9                                                                                                                                                                                                                     |
| Gain Kp = 00.0   | The gain factor $K_p$ influences the operating time of the relays. By increasing the factor, the operating time can be increased in the event of a certain control deviation.                                                                                                  |                                                                                                                                                                                                                                 |

## Synchronization (MFR 2S)

| Synchronization  | Synchronization functions                                                                                                                                                                                                                                                                                                                                                       | ON / OFF                                                                                                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| functions ON     | <ul> <li>ONAn adaptation of the generator frequency and voltage tvalues (respectively busbar frequency and busbar voltamains values) is carried out and a connect command is subsequent screens of this function are displayed.</li> <li>OFFNo synchronization occurs, but idle control if necessar command is output. The subsequent screens of this fur displayed.</li> </ul> | to the busbar<br>age to the<br>coutput. The<br>ry. No connect<br>action are not                            |
| Synchronization  | Max. perm. differential frequency (pos. slip)                                                                                                                                                                                                                                                                                                                                   | 0.02 to 0.49 Hz                                                                                            |
| df max = 0.00Hz  | The prerequisite of a connect command's being output is negative de this set differential frequency. This value specifies the upper frequent value corresponds to positive slip $\rightarrow$ generator frequency is greater t frequency).                                                                                                                                      | viation from<br>cy (positive<br>han the busbar                                                             |
| Synchronization  | Max. perm. differential frequency (neg. slip)                                                                                                                                                                                                                                                                                                                                   | 0.00 to -0.49 Hz                                                                                           |
| df min =-0.00Hz  | The prerequisite of a connect command's being output is positive deviation from this set differential frequency. This value specifies the lower frequency (negative value corresponds to negative slip $\rightarrow$ generator frequency is less than the busbar frequency).                                                                                                    |                                                                                                            |
| Synchronization  | Max. perm. differential voltage [1] 1 to 20                                                                                                                                                                                                                                                                                                                                     | V, [4] 2 to 60 V                                                                                           |
| dV max = 00V     | To ensure that a connect command will be issued, the actual value m<br>the entered differential voltage.                                                                                                                                                                                                                                                                        | ust fall below                                                                                             |
| Synchronization  | Min. pulse duration of connect relay                                                                                                                                                                                                                                                                                                                                            | 50 to 250 ms                                                                                               |
| Time pulse>000ms | The duration of the connect pulse can be adjusted to the subordinate                                                                                                                                                                                                                                                                                                            | switching unit.                                                                                            |
| Gen. circuit br. | Inherent GCB delay                                                                                                                                                                                                                                                                                                                                                              | 40 to 300 ms                                                                                               |
| Pick-up t.=000ms | The closing time of the GCB corresponds to the lead time of the contract command will be issued at the entered time before the spoint.                                                                                                                                                                                                                                          | nect command.<br>ynchronization                                                                            |
| Gen. circuit br. | Continuous pulse output for the GCB                                                                                                                                                                                                                                                                                                                                             | ON / OFF                                                                                                   |
| Cont. pulse ON   | <ul> <li>ON</li></ul>                                                                                                                                                                                                                                                                                                                                                           | etly into the<br>the connect<br>cuted reply, the<br>le power circuit<br>only for the set<br>olding must be |
| Mains circuit br | Inherent delay of MCB                                                                                                                                                                                                                                                                                                                                                           | 40 to 300 ms                                                                                               |
| Pick-up t.=000ms | The closing time of the MCB corresponds to the lead time of the con<br>mand. The connect command will be issued at the entered time befor<br>nization point.                                                                                                                                                                                                                    | nect com-<br>re the synchro-                                                                               |

## **Connection Functions (MFR 2A)**

| Connecting Gen   | GCB connection functions                                                                                                                                                                                                                                                       | ON / OFF                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| circuit br. ON   | <ul> <li>ON If the conditions set in the following screens are sat command is output to the GCB via the relay "Command: close GCB". The subsequent screens of this played.</li> <li>OFF The GCB is not connected, and the subsequent screen tion are not displayed.</li> </ul> | function are dis-                   |
| Connect Gen. CB  | Max. perm. differential frequency (pos. slip)                                                                                                                                                                                                                                  | 0.05 to 2.00 Hz                     |
| df max = 0.00Hz  | The prerequisite of a connect command's being output is that the frequency of the remanence voltage exceeds those of the voltage by no more than this differential frequency.                                                                                                  |                                     |
| Connect Gen. CB  | Max. perm. differential frequency (neg. slip)                                                                                                                                                                                                                                  | 0.05 to -2.00 Hz                    |
| df min =-0.00Hz  | The prerequisite of a connect command's being output is that the remanence voltage falls below that of the mains voltage by no more ferential frequency.                                                                                                                       | frequency of the ore than this dif- |
| Connect. Gen. CB | Min. pulse duration of connect relay                                                                                                                                                                                                                                           | 50 to 250 ms                        |
| Time pulse>000ms | The duration of the connect pulse can be adjusted to the subordin                                                                                                                                                                                                              | ate switching unit.                 |
| Gen. circuit br. | Continuous pulse output for the GCB                                                                                                                                                                                                                                            | ON / OFF                            |
| Cont. pulse ON   | <ul> <li>ON</li></ul>                                                                                                                                                                                                                                                          |                                     |

### Dead Bus Start (MFR 2S)

If the busbar is in a de-energized state, the direct connection (dead bus operation) of the GCB or the MCB may be carried out. If both connect commands are issued simultaneously, priority is given to the MCB. If several MFR 2 were connected via a CAN bus, a dead bus operation blocking is active, so that only the unit with the lowest generator number gets an add-on pulse.

| Gen. circ.break. | Dead bus start of GCB                                                                                                                                                                                                                                                                                                 | ON / OFF                                                                |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Dead bus op. ON  | <ul> <li>ONRelease of the dead bus start function for the GCB. ditions [refer to Dead Bus Start on page 31] have to the GCB to the de-energized busbar. The subsequen function are displayed.</li> <li>OFFNo dead bus start of the GCB is carried out, and the screens of this function are not displayed.</li> </ul> | Furthermore con-<br>be met to switch<br>t screens of this<br>subsequent |
| Dead bus op. GCB | Maximum differential frequency for GCB dead bus start                                                                                                                                                                                                                                                                 | 0.05 to 0.90 Hz                                                         |
| df max = 0.00Hz  | The prerequisite of the output of the connect command is that the<br>quency may, at most, deviate from the rated value by the set value                                                                                                                                                                               | generator fre-                                                          |
| Dead bus op. GCB | Maximum differential voltage for GCB dead bus start [1] 1 to 2                                                                                                                                                                                                                                                        | 20 V, [4] 2 to 60 V                                                     |
| dV max = 00V     | The prerequisite of the output of the connect command is that the generator voltage may, at most, deviate from the rated value by the set value.                                                                                                                                                                      |                                                                         |
| Mains circ.break | Dead bus start of MCB                                                                                                                                                                                                                                                                                                 | ON / OFF                                                                |
| Dead bus op. ON  | <ul> <li>ON</li></ul>                                                                                                                                                                                                                                                                                                 | Furthermore con-<br>be met to switch<br>t screens of this<br>subsequent |

### Synchronization Time Monitoring (MFR 2S)

| Sync.time contr. | Synchronization time monitoring                                                   | ON / OFF                                                                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ON               | <ul> <li>ON</li></ul>                                                             | f the GCB and the<br>ltaneously with<br>the expiry of the<br>bled, a warning<br>nization time<br>ocedure will be<br>ergizes. By press-<br>emoving one of<br>nization (e.g. ter-<br>eset. The subse-<br>e subsequent |
| Sync.time contr. | Final value for synchronization time monitoring                                   | 10 to 999 s                                                                                                                                                                                                         |
| Delay time 000s  | elay time 000s Please refer to the above description of the configuration screen. |                                                                                                                                                                                                                     |

### **Power Factor Controller (MFR 2S)**

| Power factor           | Power factor controller                                                                                                                                                                                                                                                                                                                   | ON / OFF                                                                                                                                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Controller ON          | <ul> <li>ONA load-independent, automatic control of the p carried out in the operation in parallel to the m (smaller than 5 % of the transformer rated curr can be measured only very inaccurately and the matically locked. The subsequent screen masks displayed.</li> <li>OFF</li></ul>                                                | Nower $\varphi$ factor will be<br>ains. On currents<br>rent) the power factor<br>e controller is auto-<br>s of this option will be<br>(otherwise) subsequent<br>ed. |
| Pow.fact. contr.       | Power factor controller set point 1                                                                                                                                                                                                                                                                                                       | i0.70 to 1.00 to c0.70                                                                                                                                              |
| Setpoint 1 0.00        | The set point 1 is active, if the input "Changeover setpoint 1<br>energized. The amount of the reactive load in operation in pa<br>controlled in such a way, that the given power factor is used.<br>stand for "inductive = lagging" (overexcited generator) and "<br>(underexcited generator) reactive load.                             | ↔2" (terminal 5) is not<br>irallel with the mains is<br>The letters "i" and "c"<br>capacitive = leading"                                                            |
| Pow.fact. contr.       | Power factor controller set point 2                                                                                                                                                                                                                                                                                                       | i0.70 to 1.00 to c0.70                                                                                                                                              |
| Setpoint 2 0.00        | The set point 2 is active, if the input "Changeover setpoint 14 energized. The amount of the reactive load in operation in pa controlled in such a way, that the given power factor is used. stand for "inductive = lagging" (overexcited generator) and " (underexcited generator) reactive load.                                        | ↔2" (terminal 5) is<br>trallel with the mains is<br>The letters "i" and "c"<br>capacitive = leading"                                                                |
| Setpoint ramp          | Set point ramp of the power factor controller                                                                                                                                                                                                                                                                                             | 0.05 to 0.30 /s                                                                                                                                                     |
| <b>Pf set =0.00/s</b>  | A change in set point is supplied to the controller via a ramp. The slope of the is used to alter the rate at which the controller modifies the set point value. The more rapidly the change in the set point is to be carried out, the greater the value input here must be.                                                             |                                                                                                                                                                     |
| Three-Position Control | ller                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     |
| Pow.fact. contr.       | Insensitiveness of power factor controller                                                                                                                                                                                                                                                                                                | 0.5 to 25.0 %                                                                                                                                                       |
| Insens. 00.0%          | The unit internally automatically calculates the amount of rearesponds to the power factor. In operation in parallel with the load is controlled in such a manner that - in its controlled state deviates from the internally calculated set point by no more t of insensitivity. In this case, the percentage value refers to the power. | active load which cor-<br>e mains, the reactive<br>te - the actual value<br>han the set percentage<br>e generator nominal                                           |
| Pow.fact. contr.       | Gain of power factor controller                                                                                                                                                                                                                                                                                                           | 0.1 to 99.9                                                                                                                                                         |
| Gain Kp=00.0           | The gain $K_p$ affects the operating time of the relays. By incre<br>operating time can be increased in case of a certain system de                                                                                                                                                                                                       | easing this value, the eviation.                                                                                                                                    |

| Set Point Specification Via Analog Input 0/4 | to 20 mA (MFR 2S/PSVA) |
|----------------------------------------------|------------------------|
|----------------------------------------------|------------------------|

| Set Value extern                   | Power factor controller external set point specification                                                                                                                                                                                                                                                                                              | ON / OFF                                                                                                             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| PowFacCon. ON                      | <ul> <li>ONThe power factor set point 2 may be specified w 0/4 to 20 mA. This set point is active if the inpu point 1↔2" (terminal 5) is energized. The follo function are displayed.</li> <li>OFFNo external set point value specification can be 0/4 to 20 mA input. The following screens of the displayed.</li> </ul>                             | ria an external signal<br>at "Changeover set-<br>wing screens of this<br>carried out via the<br>his function are not |
| Analog input                       | Set point value specification analog input                                                                                                                                                                                                                                                                                                            | 0-20 / 4-20 mA                                                                                                       |
| 0/4-20mA                           | <ul> <li>The analog input of the power factor controller (terminals 27/ here between 0 to 20 mA and 4 to 20 mA.</li> <li>0-20 mAMinimum value of the setpoint at 0 mA; maxim</li> <li>4-20 mAMinimum value of the setpoint at 4 mA; maxim A wire break control is carried out. If the signal of 2 mA the message "Wirebreak" is displayed.</li> </ul> | 28) can be changed<br>num value at 20 mA.<br>num value at 20 mA.<br>I falls under the value                          |
| External setp.                     | Scaling the minimum value                                                                                                                                                                                                                                                                                                                             | i0.70 to 1.00 to c0.70                                                                                               |
| 0/4mA = 00000kW                    | The minimum value of the set point is defined here.                                                                                                                                                                                                                                                                                                   |                                                                                                                      |
| External setp.                     | Scaling the maximum value                                                                                                                                                                                                                                                                                                                             | i0.70 to 1.00 to c0.70                                                                                               |
| $20\mathrm{mA} = 00000\mathrm{kW}$ | The maximum value of the set point is defined here.                                                                                                                                                                                                                                                                                                   |                                                                                                                      |

#### Set Point Specification Via Interface (MFR 2S)

The following conditions must be fulfilled for a set point specification via the interface:

- "Setpoint 2" must be enabled via discrete input (terminal 5)
- Data transmission must be established

If a data transmission cannot be established (the interface was deactivated via the configuration screen or there is an interface fault), "Setpoint 2" will be adjusted.

### **Real Power Controller**

| Power controller<br>ON            | Real power controller                                                                                                                                                                                              | ON / OFF                                                                                                                                                                |                              |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                   | <ul> <li>ON</li></ul>                                                                                                                                                                                              | power is con-<br>ent screens of<br>creens of this                                                                                                                       |                              |
| Power controller<br>Ramp = 000%/s | Set point ramp real-power controller                                                                                                                                                                               | 1 to 100 %/s                                                                                                                                                            |                              |
|                                   | A change of the set point is transferred to the controller via a ramp. T<br>the ramp changes the speed the controller uses to change the set point<br>the value entered here, the faster the set point is changed. | he slope of<br>t. The higher                                                                                                                                            |                              |
| Power controller                  | Maximum power limitation                                                                                                                                                                                           | 10 to 120 %                                                                                                                                                             |                              |
| P max.= 000 %                     |                                                                                                                                                                                                                    | The set point value of the real power controller is internally limited to<br>that no higher value can be adjusted. The percentage value refers to the<br>nominal power. | this value, so the generator |



### NOTE

For the set value power control the transfer point to the mains is not considered, which means that, in the event of excess power, power is exported to the mains, whereas, in the event of a power deficit, the power difference is imported from the mains.

| Power controller<br>P set1 = 0000kW | Set point value 1 generator real power                                                                                    | 0 to 32,000 kW     |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                     | The set point 1 is active when the discrete input "Changeover seminal 5) is not energized.                                | etpoint 1↔2" (ter- |
| Power controller                    | Set point value 2 generator real power                                                                                    | 0 to 32,000 kW     |
| P set2 = 0000kW                     | The set point 1 is active when the discrete input "Changeover setpoint $1 \leftrightarrow 2$ " (terminal 5) is energized. |                    |

#### Set Point Specification Via Analog Input 0/4 to 20 mA (MFR 2S/PSVA)

| Set Value extern<br>PowContr. ON | Real power controller external set point specification                                                                                                                     | ON / OFF                                                                       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                  | ON The real power set point 2 may be specified v<br>to 20 mA. This set point is active if the input<br>1↔2" (terminal 5) is energized. The followin<br>tion are displayed. | via an external signal 0/4<br>"Changeover setpoint<br>ng screens of this func- |
|                                  | <b>OFF</b> No external set point value specification can 0/4 to 20 mA input. The following screens of displayed.                                                           | be carried out via the<br>this function are not                                |

| Manual 37355A   |                                                                                                                                                                                                          | MFR 2 - Multi Function Relay                                                                                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog input    | Set point value specification analog inp                                                                                                                                                                 | ut 0-20 / 4-20 mA                                                                                                                                                                                                             |
| 0/4-20mA        | The analog input of the real power c<br>between 0 to 20 mA and 4 to 20 mA<br><b>0-20 mA</b> Minimum value of the<br><b>4-20 mA</b> Minimum value of the<br>A wire break control i<br>of 2 mA the message | ontroller (terminals 27/28) can be changed here<br>setpoint at 0 mA; maximum value at 20 mA.<br>setpoint at 4 mA; maximum value at 20 mA.<br>s carried out. If the signal falls under the value<br>'Wirebreak'' is displayed. |
| Analog input    | Scaling the minimum value                                                                                                                                                                                | [1] 0 to 32,000 kW; [4] 0 to 6,900 kW                                                                                                                                                                                         |
| 0/4mA = 00000kW | The minimum value of the set point is defined here.                                                                                                                                                      |                                                                                                                                                                                                                               |
| Analog input    | Scaling the maximum value                                                                                                                                                                                | [1] 0 to 32,000 kW; [4] 0 to 6,900 kW                                                                                                                                                                                         |

The maximum value of the set point is defined here.

#### Set Point Specification Via Interface

00000kW

The following conditions must be fulfilled for a set point specification via the interface:

- "Setpoint 2" must be enabled via discrete input (terminal 5)
- Data transmission must be established

If a data transmission cannot be established (the interface was deactivated via the configuration screen or there is an interface fault), "Setpoint 2" will be adjusted.

#### **Three-Position Controller**

20mA =

| Power controller | Insensitivity of active load controller                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1 to 25.0 % |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Insens. = 00.0%  | When the unit operates in parallel with the mains the real power will be controlled<br>in such a way that the actual value in the adjusted state differs no more from the<br>real power set point than by the amount of the entered insensitivity. This percent-<br>age is based on the generator nominal power.                                                                                                                                                  |               |
| Power controller | Gain of real power controller                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1 to 99.9   |
| Gain Kp 00.0     | The gain $K_p$ affects the operating time of the relays. By increasing this value, the operating time can be increased in case of a certain system deviation.                                                                                                                                                                                                                                                                                                     |               |
| Power controller | Reduction of insensitivity for active load controller                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 to 9.9    |
| Sens.red. *0.0   | If no actuating pulse was issued for at least 5 seconds the insensitivity will be re-<br>duced by the entered factor.<br>Example: In case of an insensitivity of 2.5 % and a factor 2.0 the insensitivity will be increased to 5.0 %<br>after 5 seconds. If the system deviation afterwards exceeds 5.0 % the original insensitivity (2.5 %) of the<br>controller will be set automatically. Using this entry the frequent actuation processes which are not nec- |               |

essary can be avoided thus extending the life of the actuating device.

Page 66/108

### Analog Controller Outputs (PSVA)

| Power controller | P gain of the active load controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 to 240                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Gain Kp 000      | The proportional-action coefficient $K_{PR}$ indicates the closed-loop control system gain. By increasing the gain, the response is increased to permit larger corrections to the variable to be controlled. The farther out of tolerance the process is the larger the response action is to return the process to the tolerance band. If the gain is configured too high, the result is excessive overshoot/undershoot of the desired value.                                                                                                                                                                              |                                                                                                                     |
| Reset time       | Reset time of the active load controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 to 60.0 s                                                                                                       |
| Power Tn 00.0s   | The reset time $T_n$ represents the I-component of the PID controller. The corrects for any offset (between set point and process variable) automat time by shifting the proportioning band. Reset automatically changes the quirements until the process variable and the set point are the same. This permits the user to adjust how quickly the reset attempts to correct for a The reset time constant must be greater than the derivative time constant set time constant is too small, the engine will continually oscillate. If the constant is too large, the engine will take to long to settle at a steady state. | reset time<br>ically over<br>le output re-<br>is parameter<br>iny offset.<br>at. If the re-<br>e reset time<br>ite. |
| Derivative act.  | Derivative action time of the active load controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0 to 6.0 s                                                                                                        |
| time (pow.)0.00s | The derivative-action time $T_V$ represents the D-component of the PID c<br>By increasing this parameter, the stability of the system is increased. Th<br>will attempt to slow down the action of the actuator in an attempt to pre-<br>sive overshoot or undershoot. Essentially this is the brake for the process                                                                                                                                                                                                                                                                                                         | ontroller.<br>ne controller<br>event exces-<br>ss. This por-                                                        |

tion of the PID loop operates anywhere within the range of the process unlike reset.

#### Partial Load Lead

| Part-load lead                     | Partial load lead                                                                                                                                                                                                                   | ON / OFF                                                            |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| ON                                 | <ul> <li>ON</li></ul>                                                                                                                                                                                                               | s of this<br>use, the<br>load value<br>parallel op-<br>cens of this |
| Part load lead<br>Setpoint = 000 % | Limit value partial load lead                                                                                                                                                                                                       | 5 to 110 %                                                          |
|                                    | If the unit requires a warm-up period, a lower fixed power set point value specified after synchronizing to the operation in parallel with the mains value of partial load lead refers to the generator rated power.                | ue can be<br>. The limit                                            |
| Part load lead                     | Period of partial load lead                                                                                                                                                                                                         | 0 to 600 s                                                          |
| Time 000s                          | Entry of the period during which the partial load lead will be maintained first closing of the generator power circuit breaker when the unit is oper allel to the mains). If a partial load lead is not desired, enter "0" for this | d (after the<br>ated in par-<br>parameter.                          |

### Load/var Sharing

#### Load Sharing

| Active power         | Load sharing                                                                                                                                                                                                                                                                         | ON / OFF                                                            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| load-share ON        | <ul> <li>ONReal power is shared between multiple generators ope lel. The generator outputs are distributed depending or ured value. The subsequent screens of this function ar OFFNo real power sharing is carried out, and the subseque this function are not displayed.</li> </ul> | rating in paral-<br>n the config-<br>e displayed.<br>ent screens of |
| Act. load share      | Load sharing reference variable                                                                                                                                                                                                                                                      | 10 to 99 %                                                          |
| factor =00%          | Increasing the load share factor increases the priority of the primary<br>able to the control. The lower the factor is configured, the greater the<br>secondary control variable.                                                                                                    | control vari-<br>e priority of the                                  |
|                      | • Isolated operation = frequency                                                                                                                                                                                                                                                     |                                                                     |
|                      | Definition "Secondary control variable"<br>• Isolated operation = real power related to the other generators                                                                                                                                                                         |                                                                     |
|                      | The smaller this factor the higher the priority to equally share the loators.                                                                                                                                                                                                        | ad to all genera-                                                   |
| var Sharing (MFR 2S) |                                                                                                                                                                                                                                                                                      |                                                                     |

| Reactive power                  | var sharing      | ON / OFF                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| load-share ON                   | ON               | Reactive power is shared between multiple generators operating in parallel. The generator outputs are distributed depending on the configured value. The subsequent screens of this function are displayed.<br>No reactive power sharing is carried out, and the subsequent screens of this function are not displayed. |  |
| React.load share<br>factor =00% | var sharing refe | erence variable 10 to 99 %                                                                                                                                                                                                                                                                                              |  |
|                                 | Increasing the   | load share factor increases the priority of the primary control vari-                                                                                                                                                                                                                                                   |  |

able (the voltage) to the control. The lower the factor is configured, the greater the priority of the secondary control variable (generator reactive power). Var sharing is activated during isolated parallel operating only.

## **Monitoring Configuration**

#### 

### **Generator Overload Monitoring**

The generator real power is monitored for exceeding the configured threshold value. If the threshold value is exceeded, the power is automatically reduced and the generator is disconnected from the mains by energizing the relay "Command: open GCB" (alarm class 2). The message "Gen. overload" appears on the display.

| Overload power                    | Overload monitoring                                                                                                                                   |                                                                                                                        | ON / OFF                               |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Monitoring ON                     | <ul> <li>ON</li></ul>                                                                                                                                 |                                                                                                                        |                                        |  |
| Gen. overload<br>Max. power=000%  | Threshold value generator overload monitoring                                                                                                         |                                                                                                                        | 80 to 120 %                            |  |
|                                   | The threshold value refers to the generator rated power.                                                                                              |                                                                                                                        |                                        |  |
|                                   |                                                                                                                                                       | Issuing of class 2 alarm                                                                                               |                                        |  |
| Gen. overload<br>Delay 000.0s     | Generator overload monitori                                                                                                                           | ng delay                                                                                                               | 0.0 to 600.0 s                         |  |
|                                   | In order to trip monitoring, the threshold value must be exceeded without interrup-<br>tion for at least the period of time specified in this screen. |                                                                                                                        |                                        |  |
| Gen. overload<br>Relay outp. 0000 | Generator overload output on relay                                                                                                                    |                                                                                                                        | 0 to 4                                 |  |
|                                   | If the monitoring function is<br>gized. If no relay is to be en<br>only visible if "Change relay                                                      | s triggered, the relay(s) configured her<br>ergized, "0000" must be configured her<br>y assignment" is configured YES. | e will be ener-<br>ere. This screen is |  |

### **Generator Reverse/Reduced Power Monitoring**

The generator real power is monitored for falling below the configured threshold value. If the value is fallen below the threshold, the generator will be disconnected from the mains (alarm class 3) by energizing the relay "Command: open GCB". The message "Reverse/reduced load" appears on the display. The monitoring function is only active if the "Monitoring" LED is illuminated.

| Reverse power                     | Reverse/minimum load monitoring                                                                                                                                                                                                                                                                                                                 | ON / OFF                                  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| monitoring ON                     | <ul> <li>ONA reverse or reduced power monitoring of the generator real power is performed. The subsequent screens of this function are displayed.</li> <li>OFFNo reverse or reduced power monitoring is performed and the subsequent screens of this function are not displayed</li> </ul>                                                      |                                           |  |  |
| Reverse power<br>Threshold = 00%  | Reverse/reduced power monitoring threshold value                                                                                                                                                                                                                                                                                                | -99 to 0 to +99 %                         |  |  |
|                                   | <ul> <li>The threshold value refers to the input rated power of the generator.</li> <li>Reduced power monitoring: Tripping, if the real load falls below the (positive) limiting value.</li> <li>Reverse load monitoring: Triggering, if the direction of the real power is reversed and the (negative) limit value is fallen below.</li> </ul> |                                           |  |  |
|                                   | Issuing of class 3 a                                                                                                                                                                                                                                                                                                                            | larm                                      |  |  |
| Reverse power<br>Delay 00.0s      | Delay of reverse/minimum power monitoring                                                                                                                                                                                                                                                                                                       | 0.1 to 99.9 s                             |  |  |
|                                   | In order for tripping to occur, negative deviation from the threshold value must oc-<br>cur without interruption for at least the period of time specified in this screen.                                                                                                                                                                      |                                           |  |  |
| Reverse power<br>Relay outp. 0000 | Generator reverse/reduced power output on relay                                                                                                                                                                                                                                                                                                 | 0 to 4                                    |  |  |
|                                   | If the monitoring function is triggered, the relay(s) configured he gized. If no relay is to be energized, "0000" must be configured                                                                                                                                                                                                            | ere will be ener-<br>here. This screen is |  |  |

only visible if "Change relay assignment" is configured YES.

### **Unbalanced Load Monitoring**

The unbalanced load watchdog monitors the individual currents of the generator on a percentage deviation from the arithmetic means of all generator currents. If an unbalanced load is detected, the generator will be disconnected from the mains (alarm class 3) by energizing the relay "Command: open GCB". The message "Load imbalance" appears on the display.

| Load unbalance                     | Unbalanced load monitoring                                                                                                                                                                                                                                        | ON/OFF                                |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| monitoring ON                      | <ul> <li>ON Monitoring for unbalanced load of the generator real power will be performed. The subsequent parameters of this function are displayed.</li> <li>OFF Monitoring is disabled and the subsequent screens of this function are not displayed.</li> </ul> |                                       |  |  |
| Load unbalance<br>Threshold = 00%  | Maximum permissible unbalanced load                                                                                                                                                                                                                               | 0 to 100 %                            |  |  |
|                                    | Monitoring of the set maximum unbalanced load is carried out in reference to the configured generator rated current.                                                                                                                                              |                                       |  |  |
|                                    | Issuing of class 3 alar                                                                                                                                                                                                                                           | 'n                                    |  |  |
| Load unbalance<br>Delay =00.00s    | Delay of unbalanced load monitoring                                                                                                                                                                                                                               | 0.04 to 99.98 s                       |  |  |
|                                    | In order to trip monitoring, the threshold value must be exceeded without interrup-<br>tion for at least the period of time specified in this screen.                                                                                                             |                                       |  |  |
| Load unbalance<br>Relay outp. 0000 | Generator unbalanced load output on relay                                                                                                                                                                                                                         | 0 to 4                                |  |  |
|                                    | If the monitoring function is triggered, the relay(s) configured here gized. If no relay is to be energized, "0000" must be configured he only visible if "Change relay assignment" is configured YES.                                                            | e will be ener-<br>re. This screen is |  |  |

### **Definite Time-Overcurrent Monitoring**

The individual currents of the generator are monitored with regard to excess. The transformer rated current is used as the reference value. The overcurrent watchdog has been configured for two stages and thus offers the possibility of setting the triggering level 1 to a lower triggering value with a relatively long delay time and triggering level 2 to a higher triggering value with a lesser delay (rapid triggering). If the exceeding a value is detected, the generator will be disconnected from the mains (alarm class 3) by energizing the relay "Command: open GCB". The message "Gen. overcurrent 1", or "Gen. overcurrent 2" appears on the display.


### **Reactive Power Monitoring**

Reactive power is monitored for exceeding the configured threshold value (leading and lagging). In this case the monitoring of the leading reactive power can be used as field-failure detection. If there is positive deviation from the threshold value, the generator will be disconnected from the mains (fault class 3) by energizing the relay "Command: open GCB". The message "Reactive power ind." or "Reactive power cap." appears on the display.

#### Lagging Reactive Power

| Lagg.react.power                                                                                                                                                                                                                                      | Lagging reactive power monitoring                                                                                                                                                                                 | ON/OFF                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| monitoring ON                                                                                                                                                                                                                                         | <ul><li>ON Monitoring for lagging reactive power will be perf<br/>quent parameters of this function are displayed.</li><li>OFF Monitoring is disabled and the subsequent screens<br/>are not displayed.</li></ul> | formed. The subse-<br>of this function   |  |
| Lagg.react.power                                                                                                                                                                                                                                      | Lagging reactive power monitoring threshold value                                                                                                                                                                 | 0 to 160 %                               |  |
| Threshold = 00%                                                                                                                                                                                                                                       | If the value of the lagging reactive power exceeds the configured<br>in relation to the generator rated power, a shutdown will be performed                                                                       | percentage value prmed.                  |  |
|                                                                                                                                                                                                                                                       | Issuing of class 3 ala                                                                                                                                                                                            | arm                                      |  |
| Lagg.react.power                                                                                                                                                                                                                                      | Lagging reactive power monitoring delay                                                                                                                                                                           | 0.04 to 99.98 s                          |  |
| Delay =00.00s                                                                                                                                                                                                                                         | In order to trip monitoring, the threshold value must be exceeded<br>tion for at least the period of time specified in this screen.                                                                               | without interrup-                        |  |
| Lagg, react, power                                                                                                                                                                                                                                    | Lagging reactive power monitoring output on relay                                                                                                                                                                 | 0 to 4                                   |  |
| Relay outp. 0000<br>If the monitoring function is triggered, the relay(s) configured here will be energized. If no relay is to be energized, "0000" must be configured here. This screen only visible if "Change relay assignment" is configured YES. |                                                                                                                                                                                                                   |                                          |  |
| <b></b>                                                                                                                                                                                                                                               | Leading reactive power monitoring                                                                                                                                                                                 | ON/OFF                                   |  |
| monitoring ON                                                                                                                                                                                                                                         | ON                                                                                                                                                                                                                | ormed. The subse-<br>of this function    |  |
| Lead react power                                                                                                                                                                                                                                      | Leading reactive power monitoring threshold value                                                                                                                                                                 | 0 to 160 %                               |  |
| Threshold = 00%                                                                                                                                                                                                                                       | If the value of the leading reactive power exceeds the configured<br>in relation to the generator rated power, a shutdown will be performed                                                                       | percentage value                         |  |
|                                                                                                                                                                                                                                                       | Issuing of class 3 ala                                                                                                                                                                                            | arm                                      |  |
| <b>T</b>                                                                                                                                                                                                                                              | Leading reactive power monitoring delay                                                                                                                                                                           | 0.04 to 99.98 s                          |  |
| Delay =00.00s                                                                                                                                                                                                                                         | In order to trip monitoring, the threshold value must be exceeded tion for at least the period of time specified in this screen.                                                                                  | without interrup-                        |  |
| Lead.react.power                                                                                                                                                                                                                                      | Leading reactive power monitoring output on relay                                                                                                                                                                 | 0 to 4                                   |  |
| Relay outp. 0000                                                                                                                                                                                                                                      | If the monitoring function is triggered, the relay(s) configured he gized. If no relay is to be energized, "0000" must be configured he only visible if "Change relay assignment" is configured YES.              | re will be ener-<br>here. This screen is |  |

## **Generator Frequency Monitoring**

The generator frequency is monitored for exceeding or falling below the configured threshold value. If the threshold value is exceeded or fallen below, the generator will be disconnected from the mains (alarm class 3) by energizing the relay "Command: open GCB". The message "Gen. overfreq.", or "Gen. underfreq." appears on the display. The underfrequency monitoring function is only active if the "Monitoring" LED is illuminated.

| Gen.frequency.                  | Generator frequency monitor                                                                       | ring                                                                                                                                                           | ON/OFF                                                  |
|---------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Monitoring ON                   | ON The generator<br>monitored for<br>screens of this<br>OFF No monitoring<br>tion are not di      | frequency is monitored. The generate<br>overfrequency and underfrequency. T<br>s function are displayed.<br>g is performed and the subsequent scre<br>splayed. | or frequency is<br>The subsequent<br>eens of this func- |
| Gen. overfreq.                  | Threshold value: Generator of                                                                     | overfrequency                                                                                                                                                  | 40.0 to 70.0 Hz                                         |
| f > 00.00Hz                     | If the value of the generator down will be performed.                                             | frequency exceeds the value configur                                                                                                                           | ed here, a shut-                                        |
|                                 |                                                                                                   | Issuing of class 3 ala                                                                                                                                         | rm                                                      |
| Gen. overfreq.                  | Generator overfrequency thr                                                                       | eshold delay                                                                                                                                                   | 0.04 to 9.98 s                                          |
| Delay =0.00s                    | In order to trip monitoring, t<br>tion for at least the period of                                 | the threshold value must be exceeded to the specified in this screen.                                                                                          | without interrup-                                       |
| Gen. overfreq.                  | Generator overfrequency mo                                                                        | nitoring output on relay                                                                                                                                       | 0 to 4                                                  |
| Relay outp. 0000                | If the monitoring function is<br>gized. If no relay is to be en-<br>only visible if "Change relay | s triggered, the relay(s) configured her<br>ergized, "0000" must be configured he<br>y assignment" is configured YES.                                          | e will be ener-<br>ere. This screen is                  |
| Gen. underfreg.                 | Threshold value: Generator u                                                                      | inderfrequency                                                                                                                                                 | 40.0 to 70.0 Hz                                         |
| f > 00.00Hz                     | If the value of the generator shutdown will be performed                                          | frequency falls below the value configure                                                                                                                      | gured here, a                                           |
|                                 |                                                                                                   | Issuing of class 3 ala                                                                                                                                         | rm                                                      |
| Gen. underfreq.<br>Delay =0.00s | Generator underfrequency th                                                                       | reshold delay                                                                                                                                                  | 0.04 to 9.98 s                                          |
|                                 | In order to trip monitoring, t<br>ruption for at least the period                                 | the threshold value must be fallen belowed of time specified in this screen.                                                                                   | w without inter-                                        |
| Gen. underfreg.                 | Generator underfrequency m                                                                        | onitoring output on relay                                                                                                                                      | 0 to 4                                                  |
| Relay outp. 0000                | If the monitoring function is                                                                     | s triggered, the relay(s) configured her                                                                                                                       | e will be ener-                                         |

If the monitoring function is triggered, the relay(s) configured here will be energized. If no relay is to be energized, "0000" must be configured here. This screen is only visible if "Change relay assignment" is configured YES.

### **Generator Voltage Monitoring**

The generator voltage is monitored for exceeding or falling below the configured threshold value. If the threshold value is exceeded or fallen below, the generator will be disconnected from the mains (alarm class 3) by energizing the relay "Command: open GCB". The message "Gen. overvolt.", or "Gen. undervolt." appears in the display. The undervoltage monitoring function is only active if the "Monitoring" LED is illuminated.

| Gen.voltage                                                                                     | Generator voltage monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ON / OFF                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Monitoring ON                                                                                   | <ul> <li>ON The generator voltage is mortored for overvoltage and unthis function are displayed.</li> <li>OFF No monitoring is performed, tion are not displayed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nitored. The generator voltage is moni-<br>dervoltage. The subsequent screens of<br>and the subsequent screens of this func- |  |
| Rated voltage                                                                                   | Rated generator voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1] 50 to 125 V, [4] 50 to 480 V                                                                                             |  |
| Gen. Vn = 000V                                                                                  | The threshold values for the generator volt<br>Regardless of the measurement or monitoring<br>phase voltage must be entered here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | age monitoring refer to this rated value.<br>ing, the secondary value of the phase-                                          |  |
| Volt. Monit.Gen.                                                                                | Generator voltage measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phase to phase / Phase-neutral                                                                                               |  |
| Construction of the series of the series of the series of the series are defined further below. | Generator voltage measurementPhase to phase / Phase-neutralThe unit can either monitor the phase-neutral voltages (four-wire system) or the<br>phase-phase voltages (three-wire system). Usually, for the low-voltage system<br>(400 V-version) the phase-neutral voltages are monitored, while for the medium-<br>high-voltage system (100 V-version), the phase-phase voltages are monitored. The<br>monitoring of the phase-phase voltage is recommended to avoid a phase-earth fault<br>in a compensated or isolated mains resulting in tripping of the voltage protection.<br>If voltage measurement is performed without neutral conductor (i.e. parameter<br>"Voltmeasuring" is configured "phase to phase", chapter Configure Basic Settings<br>on page 52), the setting "phase to phase" must be selected here.Phase-neutral The voltage at the terminals 0/20/21/22 is measured as a four-<br>wire installation. All subsequent screens concerning voltage<br>measuring refer to phase-neutral voltage (V <sub>Ph-N</sub> ).Phase to phase If the voltage system connected to the terminals 20/21/22 is a<br>three-wire system, this setting must be selected. All subsequent<br>screens concerning voltage measuring refer to phase-phase voltage measuring refer to phase-phase voltage (V <sub>Ph-N</sub> ). |                                                                                                                              |  |
| Gen.overvoltage                                                                                 | Threshold value: Gen. overvoltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 to 150 %                                                                                                                  |  |
| v > 000%                                                                                        | If the value of the generator voltage exceed will be performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ds the value configured here, a shutdown                                                                                     |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Issuing of class 3 alarm                                                                                                     |  |
| Gen.overvoltage                                                                                 | Generator overvoltage threshold delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04 to 9.98 s                                                                                                               |  |
| Delay =0.00s                                                                                    | In order to trip monitoring, the threshold va<br>tion for at least the period of time specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alue must be exceeded without interrup-<br>l in this screen.                                                                 |  |

| Gen.overvoltage  | Generator overvoltage monitoring output on relay                                                                                                                                                               | 0 to 4                                |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Relay outp. 0000 | If the monitoring function is triggered, the relay(s) configured here<br>gized. If no relay is to be energized, "0000" must be configured here<br>only visible if "Change relay assignment" is configured YES. | e will be ener-<br>re. This screen is |
| Gen.undervoltage | Threshold value: Gen. undervoltage                                                                                                                                                                             | 20 to 150 %                           |
| V < 000%         | If the value of the generator voltage falls below the value configur<br>down will be performed.                                                                                                                | ed here, a shut-                      |
|                  | Issuing of class 3 alar                                                                                                                                                                                        | m                                     |
| Gen.undervoltage | Generator undervoltage threshold delay                                                                                                                                                                         | 0.04 to 9.98 s                        |
| Delay =0.00s     | In order to trip monitoring, the threshold value must be fallen belo<br>ruption for at least the period of time specified in this screen.                                                                      | w without inter-                      |
| Gen.undervoltage | Generator undervoltage monitoring output on relay                                                                                                                                                              | 0 to 4                                |
| Relay outp. 0000 | If the monitoring function is triggered, the relay(s) configured here gized. If no relay is to be energized, "0000" must be configured here only visible if "Change relay assignment" is configured YES.       | e will be ener-<br>re. This screen is |

## **Mains Frequency Monitoring**

The monitoring of mains frequency is absolutely necessary if a generator is operated within a public network. In case of a mains failure (e.g. short interruption of power supply) the generator working in parallel with the mains must be disconnected from the mains automatically. The mains frequency is monitored for exceeding or falling below the set threshold value. If the threshold value is exceeded or fallen below, the system will be disconnected from the mains (alarm class 0) by energizing the relay configured for mains decoupling. The message "Mains overfrequency" or "Mains underfrequency" appears on the display.

| Mains frequency  | Mains frequency monitoring                                                                                                                                                                                              | ON / OFF                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Monitoring ON    | <ul> <li>ON The mains frequency is monitored. The main tored for overfrequency and underfrequency of this function are displayed.</li> <li>OFF There is no monitoring, and the subsequent are not displayed.</li> </ul> | ns frequency is moni-<br>y. The subsequent screens<br>screens of this function |
| Mains overfreg.  | Threshold value: Mains overfrequency                                                                                                                                                                                    | 40.0 to 70.0 Hz                                                                |
| f > 00.00Hz      | If the value of the mains frequency exceeds the value con will be performed.                                                                                                                                            | figured here, a shutdown                                                       |
|                  | Issuing of cla                                                                                                                                                                                                          | uss 0 alarm                                                                    |
| Mains overfreq.  | Mains overfrequency threshold delay                                                                                                                                                                                     | 0.04 to 9.98 s                                                                 |
| Delay =0.00s     | In order to trip monitoring, the threshold value must be ex-<br>tion for at least the period of time specified in this screen.                                                                                          | cceeded without interrup-                                                      |
| Mains overfreg.  | Mains overfrequency monitoring output on relay                                                                                                                                                                          | 0 to 4                                                                         |
| Relay outp. 0000 | If the monitoring function is triggered, the relay(s) config<br>gized. If no relay is to be energized, "0000" must be confi<br>only visible if "Change relay assignment" is configured Y                                | ured here will be ener-<br>gured here. This screen is<br>ES.                   |
| Mains underfreg. | Threshold value: Mains underfrequency                                                                                                                                                                                   | 40.0 to 70.0 Hz                                                                |
| f > 00.00Hz      | If the value of the mains frequency falls below the value of down will be performed.                                                                                                                                    | configured here, a shut-                                                       |
|                  | Issuing of cla                                                                                                                                                                                                          | uss 0 alarm                                                                    |
| Mains underfreg. | Mains underfrequency threshold delay                                                                                                                                                                                    | 0.04 to 9.98 s                                                                 |
| Delay =0.00s     | In order to trip monitoring, the threshold value must be far ruption for at least the period of time specified in this scree                                                                                            | llen below without inter-<br>en.                                               |
| Mains underfreg. | Mains underfrequency monitoring output on relay                                                                                                                                                                         | 0 to 4                                                                         |
| Relay outp. 0000 | If the monitoring function is triggered, the relay(s) config gized. If no relay is to be energized. "0000" must be confi                                                                                                | ured here will be ener-<br>gured here. This screen is                          |

only visible if "Change relay assignment" is configured YES.

### Mains Voltage Monitoring

Monitoring the mains voltage is absolutely necessary if a generator is operated within a public network. In case of a mains failure (e.g. short interruption of power supply) the generator working in parallel with the mains must be disconnected from the mains automatically. The mains voltages are monitored for exceeding or falling below the configured threshold value. If the threshold value is exceeded or fallen below, the system will be disconnected from the mains (alarm class 0) by energizing the relay configured for mains decoupling. The message "Mains overvolt." or "Mains undervolt." appears on the display.

| Mains voltage                          | Mains voltage monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ON / OFF                                                                                                                                                                                                                                  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring ON                          | ON The mains vol<br>overvoltage ar<br>tion are displa                                                                                                                                                                                                                                                                                                                                                                                                           | tage is monitored. The mains voltage i<br>d undervoltage. The subsequent scree<br>yed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s monitored for<br>ns of this func-                                                                                                                                                                                                       |
|                                        | OFFNo monitoring tion are not dis                                                                                                                                                                                                                                                                                                                                                                                                                               | is performed, and the subsequent screeplayed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eens of this func-                                                                                                                                                                                                                        |
| Rated voltage                          | Rated mains voltage                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1] 50 to 125 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V, [4] 50 to 480 V                                                                                                                                                                                                                        |
| Gen. Vn = 000V                         | The threshold values for the gardless of the measurement voltage must be entered here                                                                                                                                                                                                                                                                                                                                                                           | mains voltage monitoring refer to this or monitoring, the secondary value of .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rated value. Re-<br>the phase-phase                                                                                                                                                                                                       |
| Volt.Monit.Mains                       | Mains voltage measurement                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phase to phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e / Phase-neutral                                                                                                                                                                                                                         |
| •••••••••••••••••••••••••••••••••••••• | The unit can either monitor to<br>phase-phase voltages (three-<br>(400 V-version) the phase-nu-<br>high-voltage system (100 V-<br>monitoring of the phase-pha<br>in a compensated or isolated<br>If voltage measurement is per<br>"Voltmeasuring" is configu-<br>on page 52), the setting "phase<br><b>Phase-neutral</b> The voltage<br>wire instal<br>measuring<br><b>Phase to phase</b> If the voltage<br>three-wire<br>screens co<br>age (V <sub>Ph-PH</sub> | he phase-neutral voltages (four-wire s<br>wire system). Usually, for the low-vol<br>eutral voltages are monitored, while for<br>version), the phase-phase voltages are<br>se voltage is recommended to avoid a<br>mains resulting in tripping of the volt<br>rformed without neutral conductor (i.o.<br>red "phase to phase", chapter Configu<br>se to phase" must be selected here.<br>e at the terminals $0/50/51/52$ is measu<br>lation. All subsequent screens concerr<br>refer to phase-neutral voltage (V <sub>Ph-N</sub> ).<br>uge system connected to the terminals<br>system, this setting must be selected.<br>ncerning voltage measuring refer to phase). | ystem) or the<br>tage system<br>or the medium-<br>or monitored. The<br>phase-earth fault<br>age protection.<br>e. parameter<br>re Basic Settings<br>red as a four-<br>ning voltage<br>50/51/52 is a<br>All subsequent<br>pase-phase volt- |
| Mains overvolt.                        | Threshold value: Mains overv                                                                                                                                                                                                                                                                                                                                                                                                                                    | oltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 to 150 %                                                                                                                                                                                                                               |
| V > 000%                               | If the value of the mains volution will be performed.                                                                                                                                                                                                                                                                                                                                                                                                           | age exceeds the value configured here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e, a shutdown                                                                                                                                                                                                                             |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Issuing of class 0 alar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                         |
| Mains overvolt.                        | Mains overvoltage threshold o                                                                                                                                                                                                                                                                                                                                                                                                                                   | lelay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04 to 9.98 s                                                                                                                                                                                                                            |
| Delay =0.00s                           | In order to trip monitoring, t tion for at least the period of                                                                                                                                                                                                                                                                                                                                                                                                  | he threshold value must be exceeded v<br>time specified in this screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vithout interrup-                                                                                                                                                                                                                         |

| Mains overvolt.  | Mains overvoltage monitoring                                                                     | g output on relay                                                                                                    | 0 to 4                                   |
|------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Relay outp. 0000 | If the monitoring function is<br>gized. If no relay is to be en<br>only visible if "Change relay | s triggered, the relay(s) configured her<br>ergized, "0000" must be configured h<br>y assignment" is configured YES. | re will be ener-<br>ere. This screen is  |
| Mains undervolt. | Threshold value: Mains unde                                                                      | rvoltage                                                                                                             | 20 to 150 %                              |
| V < 000%         | If the value of the mains vol<br>will be performed.                                              | tage falls below the value configured                                                                                | here, a shutdown                         |
|                  |                                                                                                  | Issuing of class 0 ala                                                                                               | arm                                      |
| Mains undervolt. | Mains undervoltage threshold                                                                     | d delay                                                                                                              | 0.04 to 9.98 s                           |
| Delay =0.00s     | In order to trip monitoring, t<br>ruption for at least the perio                                 | the threshold value must be fallen belowed of time specified in this screen.                                         | ow without inter-                        |
| Mains undervolt. | Mains undervoltage monitori                                                                      | ng output on relay                                                                                                   | 0 to 4                                   |
| Relay outp. 0000 | If the monitoring function is gized. If no relay is to be en                                     | s triggered, the relay(s) configured her<br>ergized, "0000" must be configured h                                     | re will be ener-<br>here. This screen is |

## **Voltage Asymmetry Monitoring**

The phase-phase voltages of the mains are monitored for asymmetry. An asymmetry is accepted if the difference between any two phase-phase voltages is larger than the configured threshold value. In this case, the system will be disconnected from the mains (alarm class 0) by energizing the relay configured for mains decoupling. The message "Asymmetry" appears in the display.

only visible if "Change relay assignment" is configured YES.

| Asymmetry                     | Asymmetry monitoring                                                                                                                                                         | ON / OFF                                                                     |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| monitoring ON                 | <ul><li>ON The mains voltage is monitored for as screens of this function are displayed.</li><li>OFF No monitoring is performed and the st tion are not displayed.</li></ul> | symmetry and the subsequent ubsequent screens of this func-                  |
| Asymmetry                     | Asymmetry monitoring threshold value                                                                                                                                         | 0 to 99 %                                                                    |
| Threshold = 00%               | If the value of the asymmetry exceeds the configure<br>to the generator rated power, a shutdown will be per                                                                  | d percentage value in relation                                               |
|                               | Issuing                                                                                                                                                                      | of class 0 alarm                                                             |
| Asymmetry                     | Asymmetry monitoring delay                                                                                                                                                   | 0.04 to 99.98 s                                                              |
| Delay =00.00s                 | In order to trip monitoring, the threshold value must<br>tion for at least the period of time specified in this se                                                           | t be exceeded without interrup-<br>creen.                                    |
| Asymmetry<br>Relay outp. 0000 | Asymmetry monitoring output on relay                                                                                                                                         | 0 to 4                                                                       |
|                               | If the monitoring function is triggered, the relay(s) c<br>gized. If no relay is to be energized, "0000" must be<br>only visible if "Change relay assignment" is configu     | configured here will be ener-<br>configured here. This screen is<br>red YES. |

### Phase Shift Monitoring (MFR 2S)

A phase shift is a sudden change in the voltage curve and may be caused by a major load change. In this case, the unit detects a change in the cycle duration once. This change in the cycle duration is compared with a calculated mean value from previous measurements. The monitoring is carried out in three phases or, alternatively, even in one phase. The phase shift monitoring is only active if the mains voltage is above 70 % of the transformer rated voltage. If the threshold value is exceeded, the system will be disconnected from the mains (alarm class 0) by energizing the relay configured for mains decoupling. The message "Phase shift" appears in the display.

| Phase shift-                   | Phase shift monitoring                                                                                                                                                                                                   | ON / OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring ON                  | ON The mains freq<br>within the defin<br>displayed.<br>OFF No phase shift<br>of this function                                                                                                                            | uency is monitored and a phase shift is registered<br>ned range. The subsequent screens of this function are<br>monitoring is performed, and the subsequent screens<br>are not displayed.                                                                                                                                                                                                                                                                                                                                                                                |
| Phase shift                    | Phase shift monitoring                                                                                                                                                                                                   | one/three-phase / three-phase only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Phase shift<br>one/three phase | one/three-phase: During si<br>occurs if the p<br><u>least</u> one of th<br>two phases, th<br>occurs in all th<br>This type of n<br>ping if the sele<br>three-phase only: During th<br>curs only if th<br>all three phase | ngle-phase voltage phase shift monitoring, tripping<br>shase shift exceeds the specified threshold value in <u>at</u><br>the three phases. <b>Note:</b> If a phase shift occurs in one or<br>the single-phase threshold is considered; if a phase shift<br>hree phases, the three-phase threshold is considered;<br>nonitoring is very sensitive, and may lead to false trip-<br>ected phase angle settings are too small.<br>tree-phase voltage phase shift monitoring, tripping oc-<br>e phase shift exceeds the specified threshold value in<br>the swithin 2 cycles. |
|                                |                                                                                                                                                                                                                          | Issuing of class 0 alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



## NOTE

If the monitoring is configured to "three-phase only", only the lower of the two subsequent screens is visible; if the monitoring is configured to "one/three-phase", both configuration screens are visible.

| Phase-shift                                                                                                | Maximum phase difference                                                                                                                                                                                           | 2 to 90 $^\circ$         |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| (One phase) 00°<br>This screen is only visible if the<br>monitoring is configured to<br>"one/three-phase". | Tripping occurs if the electrical angle of the voltage curve shifts in at leaphase by more than the specified angle.                                                                                               | ast one                  |
| Phase-shift                                                                                                | Maximum phase difference                                                                                                                                                                                           | 2 to 90 $^\circ$         |
| (3-phase) 00°                                                                                              | Tripping occurs if the electrical angle of the voltage curve shifts in all the by more than the specified angle.                                                                                                   | ree phases               |
| Phase-shift                                                                                                | Phase shift monitoring output on relay                                                                                                                                                                             | 0 to 4                   |
| Relay outp. 0000                                                                                           | If the monitoring function is triggered, the relay(s) configured here will gized. If no relay is to be energized, "0000" must be configured here. The only visible if "Change relay assignment" is configured YES. | be ener-<br>is screen is |

## df/dt Monitoring (MFR 2S/PSVA)

The unit determines a measuring value for the rate of change of frequency (ROCOF). In order to enable reliable differentiation between phase shift and df/dt, measurement is carried out over 4 cycles. This results in a minimum tripping time of approx. 100 ms. If the threshold value is exceeded, the system will be disconnected from the mains (alarm class 0) by energizing the relay configured for mains decoupling. The message "Alarm df/dt" appears on the display.

| df/dt            | df/dt monitoring                                                                                                                                                                                           | ON / OFF                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Monitoring ON    | <ul><li>ON The mains voltage is monitored for asymmetry and the screens of this function are displayed.</li><li>OFF No monitoring is performed and the subsequent screen tion are not displayed.</li></ul> | ne subsequent<br>ens of this func-  |
| Release value    | df/dt monitoring threshold value                                                                                                                                                                           | 1.0 to 9.9 Hz/s                     |
| df/dt > 0.0Hz/s  | If the value of the rate of change of mains frequency exceeds the co<br>a mains disconnection will be performed.                                                                                           | onfigured value,                    |
|                  | Issuing of class 0 alar                                                                                                                                                                                    | m                                   |
| Time delay       | df/dt monitoring delay                                                                                                                                                                                     | 0.1 to 9.9 s                        |
| df/dt T =0.0s    | In order to trip monitoring, the threshold value must be exceeded we tion for at least the period of time specified in this screen.                                                                        | vithout interrup-                   |
| df/dt monitoring | df/dt monitoring output on relay                                                                                                                                                                           | 0 to 4                              |
| Relay outp. 0000 | If the monitoring function is triggered, the relay(s) configured here gized. If no relay is to be energized, "0000" must be configured her only visible if "Change relay assignment" is configured YES.    | will be ener-<br>re. This screen is |

## **Mains Decoupling**

| Mains decoupling | Mains decoupling via GCB                                                                                                                                                                                                                                                                                                                         | S / MCB                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| through MCB      | The mains protection consists of the monitoring functions for mains<br>over/undervoltage, mains over/underfrequency as well as phase shift, asym-<br>and df/dt monitoring. The mains decoupling upon triggering of a mains mon<br>function is always active and can be output to the relay "Command: open G<br>to the relay "Command: open MCB". | metry<br>nitoring<br>iCB" or |

0 to 4

## **Battery Voltage Monitoring**

| Batt. undervolt. | Battery undervoltage threshold value                                                                                                                                                        | 10.0 to 35.0 V                                                                |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| v < 00.0v        | The supply voltage is continuously monitored. Continuous<br>the set limit value for at least 15 seconds leads to the outpu<br>"Batt. undervolt." on the display and issues a centralized at | s negative deviation from<br>at of the alarm message<br>larm (alarm class 1). |
| Batt. undervolt. | Battery undervoltage monitoring output on relay                                                                                                                                             | 0 to 4                                                                        |
| Relay outp. 0000 | If the monitoring function is triggered, the relay(s) configured. If no relay is to be energized, "0000" must be configured yi visible if "Change relay assignment" is configured yi        | rred here will be ener-<br>gured here. This screen is<br>ES.                  |

## **Centralized Alarm**



#### Centralized alarm output on relay

The centralized alarm is issued if one monitoring function with the alarm classes F1, F2 and F3 is triggered. If the centralized alarm is triggered, the relay(s) configured here will be energized. If "Auto-acknowledge messages" is configured ON, the centralized alarm relay de-energizes automatically after expiry of the drop-out delay. If no relay is to be energized, "0000" must be configured here. This screen is only visible if "Change relay assignment" is configured YES.

## **Enable Monitoring**

### 

| Monitoring ON    | Delayed monitoring                                                                                                                                             | 1 to 99 s                |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| after 00s        | Time delay after the minimum frequency for monitoring (considering the input "Enable monitoring") is exceeded and the activation of the specificing functions. | e discrete<br>c monitor- |
| Monitoring ON    | Minimum frequency for monitoring                                                                                                                               | 15 to 70 Hz              |
| at f gen > 00Hz  | The delayed monitoring is enabled after exceeding the frequency config                                                                                         | ured here.               |
| f Gen > xx Hz    | Exceeding minimum frequency output on relay                                                                                                                    | 0 to 4                   |
| Relay outp. 0000 | If the above configured minimum frequency is exceeded, the relay(s) co                                                                                         | onfigured                |

If the above configured minimum frequency is exceeded, the relay(s) configured here will be energized. If no relay is to be energized, "0000" must be configured here. This screen is only visible if "Change relay assignment" is configured YES.

## Configure Pulse Outputs (MFR 2S/PSVA)

#### 



### NOTE

The pulse outputs of the energy counter are not calibrated!

These outputs issue pulses whose frequency is proportional to the measured real power or reactive power. The frequency of the pulses can be adjusted. The length of a pulse is minimum 50 ms and maximum 100 ms. The pulse frequency is adjustable in this way, that the distance of two pulses does not fall below 100 ms also in case of maximum power.

### **Real Power Pulse Counter**

| Pulse/kWh                     | Pulse output for measuring the real power                                                                                                                                                                                                            | positive / negative                                         |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Logic negative                | <b>positive</b> The open-collector output is closed per kWh pulse.<br><b>negative</b> The open-collector output is opened per kWh pulse.                                                                                                             |                                                             |  |
| Real power<br>Pulse/kWh 000.0 | Pulses per kWh                                                                                                                                                                                                                                       | 0.1 to 150.0                                                |  |
|                               | Output of the pulses which are set here is effected per active ene (kWh). (Ex.: If 20 kWh were measured and " <b>Pulse/kWh 020</b> a total of 20 kWh $\times$ 20 pulses/kWh = 400 pulses, were output. T the pulses must be carried out externally.) | rgy unit measured<br>•00" was set here,<br>he evaluation of |  |

### **Reactive Power Pulse Counter**

| Pulse/kvarh     | Pulse output for measuring the real power                                                                                                                                                                                                                           | positive / negative                                              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Logic negative  | <b>positive</b> The open-collector output is closed per kvarh puls <b>negative</b> The open-collector output is opened per kvarh pul                                                                                                                                | e.<br>se.                                                        |
| Reactive energy | Pulses per kvarh                                                                                                                                                                                                                                                    | 0.1 to 150.0                                                     |
| P./kvarh 000.0  | Output of the pulses which are set here is effected per reactive enured (kvarh). (Ex.: If 20 kvarh were measured and " <b>P</b> ./kvarh here, a total of 20 kvarh $\times$ 20 pulses/kvarh = 400 pulses, were oution of the pulses must be carried out externally.) | nergy unit meas-<br>020.00" was set<br>atput. The evalua-        |
| Pulse/kvarh     | kvarh pulse for type of reactive power                                                                                                                                                                                                                              | leading / lagging                                                |
| Type leading    | leading The pulse output occurs proportionally to the lead<br>If there is lagging reactive power, no pulses are en<br>lagging The pulse output occurs proportionally to the lagg<br>If there is leading reactive power, no pulses are en                            | ing reactive power.<br>nitted.<br>ing reactive power.<br>nitted. |

## Configure Analog Outputs (MFR 2S/PSVA)

### 

It is possible to assign a specific measurement variable to each available analog output. The output range may either be 0 to 20 mA or 4 to 20 mA. A list of the possible functions is shown below. The variable may be scaled via an upper and a lower input value. The inputs may also be assigned with prefixes.

| Analog output name                 | setting range          | Analog output name                 | setting range       |
|------------------------------------|------------------------|------------------------------------|---------------------|
| Generator voltage V <sub>L1N</sub> | 0 to 65,000V           | Generator voltage V <sub>L12</sub> | 0 to 65,000V        |
| Generator voltage V <sub>L2N</sub> | 0 to 65,000V           | Generator voltage V <sub>L23</sub> | 0 to 65,000V        |
| Generator voltage VL3N             | 0 to 65,000V           | Generator voltage VL31             | 0 to 65,000V        |
| Generator current IL1              | 0 to 9,999A            | Generator real power               | -32,000 to 32,000kW |
| Generator current IL2              | 0 to 9,999A            | Generator reactive power           | -32,000 to 32,000kW |
| Generator current IL3              | 0 to 9,999A            | Generator frequency                | 15.00 to 85.00Hz    |
| Generator power factor             | c0.50 to 1.00 to i0.50 |                                    |                     |

The two analog outputs are located at the terminals 80/81 and 82/83. The following screens refer to the analog output at terminals 80/81 as an example.

| Analog out.80/81<br>0 20mA              | Analog output range                                                                                                                                                                                | 0 20mA / 4 20mA / OFF                                          |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                         | <ul> <li>0 20mA The analog output range is 0 to 20 mA.</li> <li>4 20mA The analog output range is 4 to 20 mA.</li> <li>OFF0 mA are output and the and the subsequate are not displayed.</li> </ul> | ent screens of this function                                   |
| Analog out.80/81                        | Analog output name                                                                                                                                                                                 | refer to above table                                           |
| 000000000000000000000000000000000000000 | Selection of the variables to be specified (refer to abov                                                                                                                                          | e table).                                                      |
| Analog output                           | Scaling of the lower output value of the analog output                                                                                                                                             | refer to above table                                           |
| 0mA = 0000000                           | The lower value, for which 0 or 4 mA (depending on the range) are output, is configured here. The setting range analog output variable and is indicated in the above table                         | he configured analog output<br>depends on the selected<br>ble. |
| Analog output<br>20mA = °°°°°°°         | Scaling of the upper output value of the analog output                                                                                                                                             | refer to above table                                           |
|                                         | The upper value, for which 20 mA are output, is config<br>depends on the selected analog output variable and is in                                                                                 | gured here. The setting range ndicated in the above table.     |

## **Interface Configuration**

#### 

### **CAN Bus Interface**

| Control by |    | Control via interface |                                                                                                                                                                                                                                                                            | ON / OFF                                                                                                |
|------------|----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Interface  | ON | ON                    | The control via the serial interface is activated and a commands, that come via the interface. The control active and releases interface faults, if longer than 30 sage will be received. In case of an interface fault o figured for centralized alarm will be energized. | accepts control<br>of the interface is<br>0 seconds no mes-<br>nly the relay con-<br>eens of this func- |
|            |    |                       | ·····                                                                                                                                                                                                                                                                      |                                                                                                         |

## **Counter Configuration**

#### 

### Maintenance Call Configuration

#### Service interval 0000h in

This screen is only visible on the unit and may not be configured

using LeoPC1.

Maintenance call

Setting operation hours counter

A maintenance interval is specified via this screen. A maintenance call (alarm class 1, "Maintenance") is displayed after this time has expired. In automatic mode, the remaining time until the next maintenance call can be displayed in the display. After acknowledgement of the maintenance signal, a new maintenance interval starts. Entering a value of "0" disables this function.

### **Operation Hours Counter Configuration**

| Set oper. | hour   |
|-----------|--------|
| counter:  | 00000h |

This screen is only visible on the unit and may not be configured using LeoPC1.

This parameter can be used to specify the number of hours an engine has been in operation. This permits the user to display the correct number of engine hours if this controller is used on an older engine or this controller is to replace an older controller.

For safety reasons, the counter is set in a 2-step sequence. The following sequence applies:

1<sup>st</sup> step Set and store the desired operating hours

 $2^{nd}$  step Integrate the value which has been saved by

- Terminate the configuration mode and switch to automatic mode
- Display of the operating hours
- · Press and hold the buttons "Select " and "Cursor" for at least 10 seconds simultaneously

### Start Counter Configuration

Set counter of 00000 starts

This screen is only visible on the unit and may not be configured using LeoPC1

#### Setting start counter

0 to 49,999

The start counter is used to display how many times the engine has been started. Following each starting attempt the start counter is increased by one. This permits the user to display the correct number of starts if this controller is used on an older engine, a starter is replaced, or this controller is to replace an older controller.

**Note:** Exceeding the minimum monitoring frequency for one time is considered as a start.

For safety reasons, the counter is set in a 2-step sequence. The following sequence applies:

1<sup>st</sup> step Set and store the desired operating hours

- 2<sup>nd</sup> step Integrate the value which has been saved by
  - Terminate the configuration mode and switch to automatic mode
  - Display of the number of engine starts
  - Press and hold the buttons "Select " and "Cursor" for at least 10 seconds simultaneously

0 to 65.000 h

0 to 9.999

## **Energy Counter Configuration**

Setting energy counter kilo / Mega energy counter set in XXXX The power produced may be measured in kWh/kvarh or MWh/Mvarh. The user de-This screen is only visible on the

unit and may not be configured using LeoPC1.

fined which scale is desired for the controller with this parameter.

For safety reasons, the following counters are set in a 2-step sequence.

The following sequence applies:

1<sup>st</sup> step Set and store the desired operating hours

 $2^{nd}$  step Integrate the value which has been saved by

- Terminate the configuration mode and switch to automatic mode
- Display of the number of engine starts
- Press and hold the buttons "Select " and "Cursor" for at least 10 seconds simultaneously

| Set pos. active                                                                                           | Configure positive real energy                                                                                                                                                                                                                                        | 0 to 65,500 kWh/MWh                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| energy 0000xWh<br>This screen is only visible on the<br>unit and may not be configured<br>using LeoPC1.   | The user may input values into the kWh/MWh courrameter) with this parameter. This permits the user t kWh/MWh for a generator if this controller is used troller is to replace an older controller. This value is ter performing the procedure described above.        | ter (depending on above pa-<br>to display the correct number of<br>on an older engine or this con-<br>taken over into the counter af-   |
| Set neg. active                                                                                           | Configure negative real energy                                                                                                                                                                                                                                        | 0 to 65,500 kWh/MWh                                                                                                                     |
| This screen is only visible on the<br>unit and may not be configured<br>using LeoPC1.                     | The user may input values into the kWh/MWh courrameter) with this parameter. This permits the user t kWh/MWh for a generator if this controller is used troller is to replace an older controller. This value is ter performing the procedure described above.        | ter (depending on above pa-<br>to display the correct number of<br>on an older engine or this con-<br>taken over into the counter af-   |
| Set lagg. react.                                                                                          | Configure lagging reactive energy                                                                                                                                                                                                                                     | 0 to 65,500 kvarh/Mvarh                                                                                                                 |
| ener. 00000xvarh<br>This screen is only visible on the<br>unit and may not be configured<br>using LeoPC1. | The user may input values into the kvarh/Mvarh courameter) with this parameter. This permits the user t kvarh/Mvarh for a generator if this controller is used controller is to replace an older controller. This valuafter performing the procedure described above. | unter (depending on above pa-<br>to display the correct number of<br>d on an older engine or this<br>the is taken over into the counter |
| Set lead. react.                                                                                          | Configure leading reactive energy                                                                                                                                                                                                                                     | 0 to 65,500 kvarh/Mvarh                                                                                                                 |
| ener. 00000xvarh<br>This screen is only visible on the<br>unit and may not be configured                  | The user may input values into the kvarh/Mvarh con<br>rameter) with this parameter. This permits the user t                                                                                                                                                           | unter (depending on above pa-<br>to display the correct number of                                                                       |

kvarh/Mvarh for a generator if this controller is used on an older engine or this controller is to replace an older controller. This value is taken over into the counter after performing the procedure described above.

### **Resetting the Current Slave Pointer**

using LeoPC1.

A current slave pointer, which records and stores the maximum generator current for each phase, is implemented in the control. The display of the maximum generator currents in automatic mode can be selected via the "Message" button. The following screen appears in the display.

000 000 000 000 00.0 I Gen max Display of the maximum generator current

The maximum generator current in each phase is displayed. Reset: Pressing and holding the "Clear" button for 3 seconds while the current slave pointer screen is being displayed will reset the memory.

## **Discrete Inputs Configuration**

### 

The control unit provides the following discrete inputs:

| Discrete input | Terminal | Function                                  |
|----------------|----------|-------------------------------------------|
| DI 1           | 34       | not used                                  |
| DI 2           | 35       | control input "Isolated operation ON"     |
| DI 3           | 36       | control input "External acknowledgement"  |
| DI 4           | 60       | control input "Blocking mains protection" |
| DI 5           | 61       | Alarm input                               |
| DI 6           | 62       | Alarm input                               |
| DI 7           | 63       | Alarm input                               |
| DI 8           | 64       | Alarm input                               |

## **DI Operation Mode Configuration**



## NOTE

<u>Operating current (N.O.):</u> The discrete input is enabled by energizing it. This does not provide wire break monitoring!

<u>Closed circuit current (N.C.)</u>: The discrete input is enabled by de-energizing it. This may provide wire break monitoring.

| Dig. input | 234  | Function of the discrete alarm inputs 2 to 4                                                                                                                                                                                                                                   | E / R                          |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Function:  | EEE  | <ul> <li>The discrete inputs may be operated by an operating current (N.O.) contact of closed circuit current (N.C.) contact. The closed circuit current input may be to monitor for a wire break. A positive or negative voltage difference may be ized.</li> <li>E</li></ul> | or a<br>e used<br>e util-<br>t |
| Dig. input | 5678 | Function of the discrete alarm inputs 5 to 8                                                                                                                                                                                                                                   | E / R                          |
| Function:  | EEEE | <ul> <li>The discrete inputs may be operated by an operating current (N.O.) contact of closed circuit current (N.C.) contact. The closed circuit current input may be to monitor for a wire break. A positive or negative voltage difference may be ized.</li> <li>E</li></ul> | or a<br>> used<br>e util-<br>t |
| Dig. input | 5678 | Delay of the discrete alarm inputs 5 to 8                                                                                                                                                                                                                                      | Y / N                          |
| delayed    | YYYY | <ul><li>Y The associated alarm input is only monitored if the minimum toring frequency is exceeded.</li><li>N The discrete input is always monitored.</li></ul>                                                                                                                | moni-                          |
| Dig. input | 5678 | Alarm class of the discrete alarm inputs 5 to 8                                                                                                                                                                                                                                | 0 to 3                         |
| Err. class | 0000 | Different alarm classes can be assigned to each discrete alarm input.                                                                                                                                                                                                          |                                |

## **DI Alarm Text Configuration**

The alarm texts are displayed in the case of activation of an associated alarm input.

| Fault text: t.61                | Setting the alarm text for terminal 61                                               | user-defined   |
|---------------------------------|--------------------------------------------------------------------------------------|----------------|
| Terminal 61                     | This parameter is used to enter the alarm text. The text for this parameter defined. | neters is user |
| Fault text: t.62<br>Terminal 61 | Setting the alarm text for terminal 62                                               | user-defined   |
|                                 | This parameter is used to enter the alarm text. The text for this param defined.     | neters is user |
| Fault text: t.63                | Setting the alarm text for terminal 63                                               | user-defined   |
| Terminal 61                     | This parameter is used to enter the alarm text. The text for this parameter defined. | neters is user |
| Fault text: t.64<br>Terminal 61 | Setting the alarm text for terminal 64                                               | user-defined   |
|                                 | This parameter is used to enter the alarm text. The text for this parameter defined  | neters is user |

## **Password Configuration**

# i

## NOTE

Once the code level is set, this is not changed, even if the configuration mode is accessed steady. If an incorrect code number is input, the code level is set to CL0, and the item is thereby blocked for third parties.

If the supply voltage is present and not interrupted for 2 hours, code level 0 is set automatically.

| Define level 1 | Code level 1 (Customer)     0000                                                                                                                                                                                           | ) to 9999         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| code 0000      | This screen appears in code level 2 (password protection enabled) first. Fol the input of digits in this screen, the code level for level 1 (Customer) is set more information about password protection refer to page 47. | llowing<br>t. For |

| Define level 2 | Code level 2 (Commissioner)0000 to 9999                                               |
|----------------|---------------------------------------------------------------------------------------|
| code 0000      | This screen appears in code level 2 (password protection enabled) first Following     |
|                | the input of digits in this screen, the code level for level 2 (mechanic) is set. For |
|                | more information about password protection refer to page 47.                          |

## Chapter 7. Commissioning



## **DANGER - HIGH VOLTAGE**

When commissioning the unit, please observe the five safety rules that apply to the handling of live equipment. Make sure that you know how to provide first aid in current-related accidents and that you know where the first aid kit and the nearest telephone are. Never touch any live components of the system or on the back of the system:

| LIFE | THREATENING |  |
|------|-------------|--|
|      |             |  |



## WARNING

The unit may only be commissioned by a qualified technician. The "EMERGENCY STOP function must function safely before the commissioning and must not depend on the particular engine.



## CAUTION

Prior to commissioning, check that all measuring voltages are correctly connected with regard to phases. The connect commands for the power circuit breakers must be disconnected at the power circuit breakers. The rotating field must be measured. Any lack or incorrect connection of measuring voltages or other signals may lead to incorrect functions and damage the unit as well as engines and components connected to the unit!

### Procedure

- 1. After checking if all measuring voltages are connected in-phase, the power supply has to be applied (24 Vdc).
- 2. By simultaneous depression of the two buttons "Digit<sup>↑</sup>" and "Cursor→" you enter into configuration mode.
- 3. In absence of all releases and replies, there must be a check as to whether the applied voltages correspond to the displayed values. **Attention:** If there is no measuring voltage, this may lead to an asynchronous/induction add-on order in case of an active dead bus operation!
- 4. Check the entire wiring to the MFR 2. The wiring of some relays can be checked by changing from closed circuit current (N.O.) to operating current (N.C.) and thus to switch (please do not forget after the check to configure them again correctly). The response of the circuit breakers must be checked.
- 5. Execute now the test of the protective functions for the generator.
- 6. Synchronize the GCB or the MCB. Before inserting one of the two circuit breaker it is absolutely necessary to check whether the measuring voltages are attached correctly. It must also be checked whether the synchronous conditions are fulfilled in the moment when the MFR 2 issues an add-on pulse. This check can easily occur in measuring the difference voltage directly at the appropriate circuit breaker.
- 7. After a successful check of the synchronization please check the monitored current values, the power direction and the monitored power factor.
- 8. Please carry out further possible checks (depending on the application and the equipment of the MFR 2).



Figure 7-1: Dimensions

# Appendix B. Technical Data

| Measuring voltage                       |                                                    |                                                                  |
|-----------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| - Measuring voltage                     | Rated value (V <sub>rated</sub> ) $\lambda/\Delta$ | [1] 66/115 Vac                                                   |
|                                         |                                                    | [4] 230/400 Vac                                                  |
| Maxim                                   | um value V <sub>ph-ph</sub> (UL/cUL)               | [1] max. 150 Vac                                                 |
|                                         |                                                    | [4] max. 300 Vac                                                 |
|                                         | Rated voltage V <sub>ph-ground</sub>               | [1] 150 Vac                                                      |
|                                         |                                                    | [4] 300 Vac                                                      |
|                                         | Rated surge voltage                                | [1] 2.5 kV                                                       |
|                                         |                                                    | [4] 4.0 kV                                                       |
| <ul> <li>Measuring frequency</li> </ul> | r                                                  |                                                                  |
| - Accuracy                              |                                                    |                                                                  |
| - Resistance                            |                                                    |                                                                  |
| - Linear measuring ran                  | ıge                                                |                                                                  |
| - Input resistance                      |                                                    | [1] 0.21 MΩ                                                      |
| -                                       |                                                    | [4] 0.7 MΩ                                                       |
| - Maximum power con                     | sumption per path                                  |                                                                  |
| Measuring current                       |                                                    | isolated                                                         |
| - Measuring current                     |                                                    | [1] /1 A                                                         |
|                                         |                                                    | [5] /5 A                                                         |
| - Accuracy                              |                                                    |                                                                  |
| - Linear measuring ran                  |                                                    | $3.0 \times I$                                                   |
|                                         | Mains                                              | $1.5 \times I$                                                   |
| - Power consumption                     | Wallis                                             | < 0.15  VA                                                       |
| - Rated short-time curr                 | rent (1 s)                                         | [1] 50 0 × I                                                     |
|                                         |                                                    | $[1]$ 50.0 × $I_{\text{rated}}$<br>[5] 10.0 × $I_{\text{rated}}$ |
| Ambiant variables                       |                                                    |                                                                  |
| - Power supply                          |                                                    | 24 Vdc (9.5 to 32 Vdc)                                           |
| Intrinsic consumption                   | n                                                  | $max_{15} W$                                                     |
| - Intilliste consumption                | ۱۱                                                 | $20 \text{ to } \pm 70 \text{ °C}$                               |
| - Ambient temperature                   | ·                                                  | 95% not condensing                                               |
| - Amolent numberly                      |                                                    |                                                                  |
| Discrete inputs                         |                                                    | isolated                                                         |
| - Input range (U <sub>Cont, disc</sub>  | crete input)                                       | Rated voltage 18 to 250 Vac/dc                                   |
| - Input resistance                      |                                                    | approx. 68 kΩ                                                    |
| Relay outputs                           |                                                    | potential free                                                   |
| - Contact material                      |                                                    | AgCdO                                                            |
| - General purpose (GP                   | ) (U <sub>Cont, relay output</sub> )               |                                                                  |
|                                         | AC                                                 |                                                                  |
|                                         | DC                                                 |                                                                  |
|                                         |                                                    | 0.36 Adc@125 Vdc                                                 |
|                                         |                                                    | 0.18 Adc@250 Vdc                                                 |
| - Pilot duty (PD) (U <sub>Con</sub>     | it, relay output)                                  | <u> </u>                                                         |
|                                         | AC                                                 | B300                                                             |
|                                         | DC                                                 |                                                                  |
|                                         |                                                    | 0.22 Adc@125 Vdc                                                 |
|                                         |                                                    | $0.10 \operatorname{Adc}(a) 250 \operatorname{Vdc}$              |

| Analog inputs                             |                                                                       |
|-------------------------------------------|-----------------------------------------------------------------------|
| - Freely scaleable                        | resolution 10 bit                                                     |
| - Pt100 input                             | for measuring resistances according to IEC 751                        |
|                                           | 2/3 conductor measurement, 0 to 200 °C                                |
| Analog outputs                            | isolated                                                              |
| - At rated value                          | freely scaleable                                                      |
| - Insulation voltage                      |                                                                       |
| - Resolution PWM                          |                                                                       |
| 20/0/4 to 20 mA output                    |                                                                       |
| - 0 to 5 V / 0 to 10 V / $\pm$ 5 V output | resistance ≤1 kΩ                                                      |
| Pulse outputs                             |                                                                       |
| - Type                                    | transistor output                                                     |
| - Rated gate voltage                      |                                                                       |
| - Maximum gate voltage                    |                                                                       |
| - Minimum gate current                    |                                                                       |
| - Maximum gate current                    |                                                                       |
| Interface                                 | isolated                                                              |
| - Insulation voltage                      |                                                                       |
| - Version                                 | variable                                                              |
| Housing                                   |                                                                       |
| - Type                                    | APRANORM DIN 43 700                                                   |
| - Dimensions (B × H × T)                  |                                                                       |
| - Front cutout (B×H)                      |                                                                       |
| - Wiring                                  | Screw-type terminals                                                  |
|                                           | depending on plug connector 1.5 mm <sup>2</sup> , 2.5 mm <sup>2</sup> |
|                                           | use 60/75 °C copper wire only                                         |
|                                           | use class 1 wire only or equivalent                                   |
| - Weight                                  | approx. 1,000 g                                                       |
| Protection                                |                                                                       |
| - Protection system                       |                                                                       |
| Ĭ                                         | P54 from front with gasket (gasket: P/N 8923-1037)                    |
|                                           | IP21 from back                                                        |
| - Front foil                              |                                                                       |
| - EMC test (CE)                           | tested according to applicable EN guidelines                          |
| - Listings                                | CE marking; UL listing for ordinary locations                         |
| UI                                        | /cUL listed, Ordinary Locations, File No.: E231544                    |

# Appendix C. Interface Telegram

## **Transmission Telegram**

The data in the following table can be processed using a Gateway GW 4 or a PLC and transmitted to other bus systems. The MFR 2 sends its data via cyclic CAN messages with this.

The transfer rate of this communication is 125 kBaud.

The CAN ID, on which the MFR 2 is sending, is calculated as follows:

**CAN ID = d'800 + item number** (or H'320 + item number)

(The item number is a parameter, which can be set at the MFR 2, which influences directly the CAN ID on which the item sends its visualization messages.)

A visualization message, which is sent by an MFR 2, consists of 8 bytes and is composed as follows:

| Byte 0 | Byte 1     | Byte 2      | Byte 3      | Byte 4      | Byte 5      | Byte 6      | Byte 7      |
|--------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| H'DD   | MUX number | data word 1 | data word 1 | data word 2 | data word 2 | data word 3 | data word 3 |
|        |            | high byte   |

In a visualization message the byte 0 is always used to show the hexadecimal value DD. This one defines the message as a visualization message. Since the complete transmission telegram of the MFR 2 includes more than three data words, byte 1 sends a MUX number starting with 0 in addition. Therefore it is theoretically possible to send  $(256 \times 3 = 768)$  words via the CAN ID. The whole telegram is built up as follows:

Line 1: MUX number 0, data word 1 Line 2: MUX number 0, data word 2 Line 3: MUX number 0, data word 3 Line 4: MUX number 1, data word 1 Line 5: MUX number 1, data word 2 Line 6: MUX number 1, data word 3 . . Line (n): MUX number (n-1/3), data word 1 Line (n+1): MUX number (n-1/2), data word 2 Line (n+2): MUX number (n-1/1), data word 3

n depends on the total length of the item-specific telegram and cannot be larger than H'FF.

The transmitting counter in word 38 can be used to monitor the functional efficiency of the CAN at the MFR 2. This counter is increased by one after sending a message. It must be increased thus always by 13 if it sends itself, because the whole telegram consists of 13 messages.

| CAN-Bus            | No. | Content (words)                        | Unit                                                     | Comment                                      |
|--------------------|-----|----------------------------------------|----------------------------------------------------------|----------------------------------------------|
| MUV-11             | 1   | Telegram call sign                     | "408"                                                    | Telegram type                                |
| MUX=1,1<br>MUX=1.2 | 2   | Generator voltage I 12                 | $V \times 10^{UGNEXPO}$                                  |                                              |
| MUX=1.3            | 3   | Generator voltage L23                  | $V \times 10^{UGNEXPO}$                                  |                                              |
| MUX=2,1            | 4   | Generator voltage L31                  | $V \times 10^{UGNEXPO}$                                  |                                              |
| MUX=2,2            | 5   | Generator frequency                    | $Hz \times 100$                                          |                                              |
| MUX=2,3            | 6   | Generator current L1                   | $A \times 10^{IGNEXPO}$                                  |                                              |
| MUX=3,1            | 7   | Generator current L2                   | $A \times 10^{IGNEXPO}$                                  |                                              |
| MUX=3,2            | 8   | Generator current L3                   | $A \times 10^{IGNEXPO}$                                  |                                              |
| MUX=3,3            | 9   | Generator power factor                 | dim.los $\times$ 100                                     | -99-100-+99                                  |
| MUX=4,1            | 10  | Generator real power                   | $W \times 10^{PGNEAPO}$                                  | LOO THE LOUSEVPO                             |
| MUX=4,2            | 11  | Busbar voltage                         | $V \times 10^{00000000000000000000000000000000000$       | 100 V units: V $\times$ 10 <sup>033EAU</sup> |
| MUX=4,3            | 12  | Busbar frequency                       | $Hz \times 100$                                          |                                              |
| MUX=5,1<br>MUX=5.2 | 13  | Mains voltage L12                      | $V \times 10$<br>$V \times 10^{\text{UNTEXPO}}$          |                                              |
| MUX=5,2            | 14  | Mains voltage L25                      | $V \times 10^{\text{UNTEXPO}}$                           |                                              |
| MUX=6.1            | 16  | Mains frequency                        | $H_{z} \times 100$                                       |                                              |
| MUX=6.2            | 17  | Mains current L1                       | $A \times 10^{INTEXPO}$                                  |                                              |
| MUX=6,3            | 18  | Mains power factor                     | dim.los $\times$ 100                                     | -99-100-+99                                  |
| MUX=7,1            | 19  | Mains interchange real power           | $W \times 10^{PNTEXPO}$                                  |                                              |
| MUX=7,2            | 20  | Status of the power circuit breakers   | Bit 15 = 1 $\setminus$                                   | Internal                                     |
|                    |     |                                        | Bit 14 = 1 /                                             | Internal                                     |
|                    |     |                                        | Bit 13 = 1 $\setminus$                                   | Internal                                     |
|                    |     |                                        | Bit $12 = 1 /$                                           |                                              |
|                    |     |                                        | Bit $10 = 1$ /                                           | Internal                                     |
|                    |     |                                        | Bit 9 = 1 $\setminus$                                    | <b>x</b> , 1                                 |
|                    |     |                                        | Bit 8 = 1 /                                              | Internal                                     |
|                    |     |                                        | Bit 7 = $1 \land$                                        | GCB is closed                                |
|                    |     |                                        | Bit $6 = 1 /$                                            |                                              |
|                    |     |                                        | Bit 5 = 1 $\setminus$                                    | MCB is closed                                |
|                    |     |                                        | $\frac{Bit 4}{Bit 3} = 1$                                |                                              |
|                    |     |                                        | Bit 2 = 1 /                                              | Internal                                     |
|                    |     | Note: 1/1 means: watchdog has released | Bit 1 = 1 $\setminus$                                    | Internal                                     |
|                    |     | 0/0 means: watchdog has not released   | Bit 0 = 1 /                                              | Internal                                     |
| MUX=7,3            | 21  | Alarm class                            | Bit 15 = 1 $\setminus$                                   | Internal                                     |
|                    |     |                                        | Bit $14 = 1 /$                                           |                                              |
|                    |     |                                        | Bit $12 = 1$ /                                           | Internal                                     |
|                    |     |                                        | Bit 11 = 1 $\setminus$                                   | Y , 1                                        |
|                    |     |                                        | Bit 10 = 1 /                                             | Internal                                     |
|                    |     |                                        | Bit 9 = 1 $\setminus$                                    | Internal                                     |
|                    |     |                                        | Bit 8 = 1 /                                              |                                              |
|                    |     |                                        | Bit $\beta = 1$                                          | Alarm class 3                                |
|                    |     |                                        | Bit 5 = 1 $\setminus$                                    |                                              |
|                    |     |                                        | Bit 4 = 1 /                                              | Alarm class 2                                |
|                    |     |                                        | Bit 3 = 1 $\setminus$                                    | A larm class 1                               |
|                    |     |                                        | Bit 2 = 1 /                                              |                                              |
|                    |     | Note: 1/1 means: watchdog has released | Bit $1 = 1$ \                                            | Alarm class 0                                |
| MUX=8.1            | 22  | Unternal alarms 1                      | Bit $15 = 1$                                             |                                              |
| 101011 0,1         | 22  |                                        | Bit 14 = 1 /                                             | Generator overfrequency                      |
|                    |     |                                        | Bit 13 = 1 $\setminus$                                   | Concreter underfrequency                     |
|                    |     |                                        | Bit 12 = 1 /                                             | Generator undernequency                      |
|                    |     |                                        | Bit $11 = 1$                                             | Generator overvoltage                        |
|                    |     |                                        | $Bit 10 = 1 /$ $Bit 0 = 1 \rangle$                       |                                              |
|                    |     |                                        | Bit $8 = 1 /$                                            | Generator undervoltage                       |
|                    |     |                                        | Bit 7 = 1 $\setminus$                                    | Timiting and the                             |
|                    |     |                                        | Bit 6 = 1 /                                              | Limiting performance reached                 |
|                    |     |                                        | Bit 5 = 1 $\setminus$                                    | Battery undervoltage                         |
|                    |     |                                        | Bit $4 = 1 /$                                            |                                              |
|                    |     |                                        | Bit $3 = 1$ \<br>Bit $2 = 1$ /                           | Generator overload                           |
|                    |     | Note: 1/1 means: watchdog has released | $\frac{\operatorname{Bit} 2}{\operatorname{Bit} 1} = 1 $ |                                              |
|                    |     | 0/0 means: watchdog has not released   | Bit $0 = 1$ /                                            | Generator reverse power                      |

| CAN-Bus  | Nr. | Content (words)                                   | Unit                                   | Comment                        |
|----------|-----|---------------------------------------------------|----------------------------------------|--------------------------------|
|          |     | Ι                                                 |                                        |                                |
| MUX=8,2  | 23  | Internal alarme 2                                 | Bit 15 = 1 $\setminus$                 | Mains overfrequency            |
|          |     |                                                   | Bit 13 $-1$                            | · ·                            |
|          |     |                                                   | Bit $13 = 1$ (Bit $12 = 1$ /           | Mains underfrequency           |
|          |     |                                                   | Bit 11 = 1 $\setminus$                 |                                |
|          |     |                                                   | Bit 10 = 1 /                           | Mains overvoltage              |
|          |     |                                                   | Bit 9 = 1 $\setminus$                  | Mains undervoltage             |
|          |     |                                                   | Bit 8 = 1 /                            |                                |
|          |     |                                                   | Bit $/ = 1$<br>Bit $6 = 1$ /           | df/dt                          |
|          |     |                                                   | Bit 5 = 1 $\setminus$                  | Synchronization time           |
|          |     |                                                   | Bit 4 = 1 /                            | exceeded                       |
|          |     |                                                   | Bit 3 = 1 $\setminus$                  | Mains asymmetry                |
|          |     | Note: 1/1 means: watchdog heg released            | Bit $2 = 1 /$                          |                                |
|          |     | 0/0 means: watchdog has not released              | Bit $0 = 1$ /                          | Mains vector jump              |
| MUX=8,3  | 24  | Internal alarms 3                                 | Bit 15 = 1 $\setminus$                 | Re-active power                |
|          |     |                                                   | Bit 14 = 1 /                           | lagging                        |
|          |     |                                                   | Bit 13 = 1 $\setminus$                 | Re-active power                |
|          |     |                                                   | Bit $12 = 1$ /                         | leading                        |
|          |     |                                                   | Bit $10 = 1$ /                         | Interface alarm                |
|          |     |                                                   | Bit 9 = 1 $\setminus$                  | TT 1 1 11 1                    |
|          |     |                                                   | Bit 8 = 1 /                            | Unbalanced load                |
|          |     |                                                   | Bit 7 = 1 $\setminus$                  | Generator overcurrent, level 1 |
|          |     |                                                   | Bit 6 = 1 /                            |                                |
|          |     |                                                   | Bit $\Delta = 1$ (                     | Generator overtemperature      |
|          |     |                                                   | Bit 3 = 1 $\setminus$                  |                                |
|          |     |                                                   | Bit 2 = 1 /                            | Maintenance call               |
|          |     | Note: 1/1 means: watchdog has released            | Bit 1 = 1 $\setminus$                  | False start                    |
| MUX=0.1  | 25  | 0/0 means: watchdog has not released              | Bit $0 = 1$ /                          |                                |
| MUX-9,1  | 23  |                                                   | Bit $13 = 1$ (Bit $14 = 1$ /           | Analog input 1, level 1        |
|          |     |                                                   | Bit 13 = 1 $\setminus$                 | Analog input 1 lovel 2         |
|          |     |                                                   | Bit 12 = 1 /                           | Analog input 1, level 2        |
|          |     |                                                   | Bit $11 = 1$ \                         | Analog input 2, level 1        |
|          |     |                                                   | Bit 9 = 1 $\setminus$                  |                                |
|          |     |                                                   | Bit 8 = 1 /                            | Analog input 2, level 2        |
|          |     |                                                   | Bit 7 = 1 $\setminus$                  | Real power surge,              |
|          |     |                                                   | Bit 6 = $I /$                          | positive                       |
|          |     |                                                   | Bit $4 = 1$ /                          | Real power surge, negative     |
|          |     |                                                   | Bit 3 = 1 $\setminus$                  | Concreter evereurrent level 2  |
|          |     |                                                   | Bit 2 = 1 /                            | Generator overcurrent, lever 2 |
|          |     | Note: 1/1 means: watchdog has released            | Bit $I = I \setminus$<br>Bit $0 = 1 /$ | Displacement voltage           |
| MUX=9.2  | 26  | Running hours                                     | $h \times 65.535$                      | High Word                      |
| MUX=9,3  | 27  | 1                                                 | h                                      | Low Word                       |
| MUX=10,1 | 28  | Maintenance call                                  | h                                      |                                |
| MUX=10,2 | 29  | Start counter                                     | dimension less                         |                                |
| MUX=10,3 | 30  | Battery voltage                                   | $V \times 10$                          | TT: 1 W/ 1                     |
| MUX=11,1 | 31  | Generator real energy                             | kwn × 05.535                           | High Word                      |
| MUX=11.2 | 32  | H B Exponent generator power                      | K VV 11                                | PGNEXPO                        |
|          | 33  | L.B. Exponent generator voltage                   |                                        | UGNEXPO                        |
| MUX=12,1 | 24  | H.B. Exponent generator current                   |                                        | IGNEXPO                        |
|          | 34  | L.B. free                                         |                                        |                                |
| MUX=12,2 | 35  | H.B. Exponent mains power                         |                                        | PNTEXPO                        |
| MUV 10.0 |     | L.B. Exponent mains voltage                       |                                        | UNTEXPO                        |
| MUX=12,3 | 36  | H.B. Exponent mains current                       |                                        | INTEXPO                        |
| MUX=13.1 |     | H.B. Exponent bsubar voltage (100 V version only) |                                        | USSEXPO                        |
|          | 37  | L.B. frei                                         |                                        | CODENI O                       |
| MUX=13,2 | 38  | Transmitting counter                              | dimension less                         |                                |
| MUX=13,3 | 39  | free                                              |                                        |                                |

| VgenEXPO   | Exponent generator voltage               |
|------------|------------------------------------------|
| IgenEXPO   | Exponent generator current               |
| PgenEXPO   | Exponent generator power                 |
| VbusEXPO   | Exponent busbar voltage                  |
| VmainsEXPO | Exponent mains voltage                   |
| PmainsEXPO | Exponent mains power                     |
| PgenWD     | Conversion factor steps $\rightarrow$ kW |
|            |                                          |

## **Receiving Telegram**

The data in the following table can be processed by a PLC or with any other suitable receiving unit.

The CAN ID, on which the MFR 2 is receiving, is as follows:

#### **CAN ID = d'831** (or H'33F)

A remote message, which is received by an MFR 2, consists of 8 bytes and is composed as follows:

| Byte 0 | Byte 1    | Byte 2    | Byte 3   | Byte 4    | Byte 5    | Byte 6    | Byte 7    |
|--------|-----------|-----------|----------|-----------|-----------|-----------|-----------|
| H'EE   | Generator | Address   | Address  | Data word | Data word | Check sum | Check sum |
|        | number    | high byte | low byte | high byte | low byte  | high byte | low byte  |

In a visualization message the byte 0 is always used to show the hexadecimal value EE. The generator number of the addressed MFR 2 must be sent on byte 1.

For the address of Byte 2 and 3 is valid: Set value Real power =  $501 (= 1F5_{hex})$ , set value power factor =  $502 (= 1F6_{hex})$ , control word =  $503 (= 1F7_{hex})$ .

The test amounts were calculated as follows:

- High byte = (Byte 0) XOR (Byte 2) XOR (Byte 4),
- Low byte = (Byte 1) XOR (Byte 3) XOR (Byte 5).

The following data words can be received by the MFR 2.

| No | Content (words)                        | Unit | Comment        |                                    |
|----|----------------------------------------|------|----------------|------------------------------------|
| -  |                                        |      |                |                                    |
| 1  | Set value for real power               | kW   | see below      |                                    |
| 2  | Set value for generator $\cos \varphi$ |      | Example: 0064H | $\cos \varphi = 1.00$              |
|    |                                        |      | 0063H          | $\cos \varphi = i 0.99 $ (lagging) |
|    |                                        |      | FF9EH          | $\cos \varphi = k0.98$ (leading)   |
| 3  | Control word                           |      | Bit 15         | Internal                           |
|    |                                        |      | Bit 14         | Internal                           |
|    |                                        |      | Bit 13         | Internal                           |
|    |                                        |      | Bit 12         | Internal                           |
|    |                                        |      | Bit 11         | Internal                           |
|    |                                        |      | Bit 10         | Internal                           |
|    |                                        |      | Bit 9          | Internal                           |
|    |                                        |      | Bit 8          | Internal                           |
|    |                                        |      | Bit 7          | Internal                           |
|    |                                        |      | Bit 6          | Internal                           |
|    |                                        |      | Bit 5          | Internal                           |
|    |                                        |      | Bit 4 = 1      | Acknowledgement                    |
|    |                                        |      | Bit 3 $= 0$    | always 0                           |
|    |                                        |      | Bit 2 $= 0$    | always 0                           |
|    |                                        |      | Bit 1 = 1      | Internal                           |
|    |                                        |      | Bit 0 $= 1$    | Internal                           |

Coding of the power setpoint:

The power value uses the bits 0 to 13. Bit 14 must be 1, bit 15 must be 0. Thus power rating up to 16.383 kW can be transmitted.

Example:

A power of 150 W shall be adjusted. Then the value to be sent is: 01/00 0000 1001 0110 B → 4096 H

The total remote message of above example is therefore: 33F | EE | 01 | F5 01 | 40 96 | AF 62



## NOTE

To process the set point values of the MFR 2 sent via interface, the discrete input "Setpoint value 1-2" at terminal 5 must be energized!



## NOTE

If the DPC configuration cable is connected, the CAN interface is out of operation.

If remote control via CAN interface is enabled, the monitoring of the interface is also active. An interface fault is issued if bit 2 in the control word has the value "1" for more than 30 seconds or if bit 3 in the control word has not been sent with the value "0" for more than 30 seconds or the whole control word was not sent for more than 30 seconds.

To be able to monitor the set point messages as well, it is absolutely necessary that all three words are always sent consecutively. If an interface fault is issued, the configured fixed set point values will be used to control.

# Appendix D. Parameter List

| Product number P/N |                    |              |                                 | Rev                 |             |             |
|--------------------|--------------------|--------------|---------------------------------|---------------------|-------------|-------------|
| Versio             | n M                | FR 2         |                                 |                     |             |             |
| v er sio           |                    | IFK 2        |                                 |                     |             |             |
| Projec             | t                  |              |                                 |                     |             |             |
| Serial             | number S/          | 'n           | Date                            |                     |             |             |
|                    |                    |              |                                 |                     |             |             |
| Pkg.               | Parame<br>100/400  | ter<br>)V    | Adjustment range                | Standard<br>setting | Custome     | r settings  |
| CONI               | FICTIDE CENEDAT    | DADAMETEDS   | 1                               |                     |             |             |
| CON                | Software worgier   | FARANIEIERO  | )                               | V                   | 1           | [           |
|                    | Enter code         | 1            | 0000 to 0 000                   | V X.XXXX<br>VVVV    | +           |             |
|                    | Password protect   | ion          | 0000 to 9.999                   | OFF                 |             |             |
|                    | Direct para.       | .1011        | VES/NO                          | NO                  |             |             |
|                    | Service display    |              | ON/OFF                          | ON                  |             |             |
| CONI               | FICULTER DASIC SET | TINCS        | 010/011                         | ON                  |             |             |
| CON                | Generation number  | TINGS        | 1 ( 0                           | 1                   | T           |             |
|                    | Generator number   | funghiand    |                                 |                     |             |             |
|                    | Europe relay-      | runction?    | YES/NO                          | NU                  |             |             |
|                    | Relay "open GCB"   |              | E/K<br>E/D                      | EEEE                | ΠΕΠΡ        | ΠΕΠΡ        |
|                    | Relay "open GCB"   |              | E/R<br>E/D                      | E                   |             |             |
|                    | Open MCB via       | release MCB  | ON/OFF                          | OFF                 |             |             |
|                    | Auto-acknowledge   | relav        | ON/OFF                          | ON                  |             |             |
|                    | Auto-acknowledge   | messages     | ON/OFF                          | ON                  |             |             |
|                    | Acknowledgement    | message aft. | 1 to 99 s                       | 1 s                 |             |             |
| CONI               | FIGURE GENERAT     | OR AND MAIN  | S SETTINGS                      | I.                  | <u>1</u>    |             |
| con                | Generator nom      | frequency    | 48.0 to 62.0 Hz                 | 50.0 Hz             | T           |             |
|                    | Gen voltage        | primary      | 0.050 to 65.000 kV              | 6 300/0 400 kV      |             |             |
|                    | Gen. voltage       | secondary    | 50 to 125/50 to 480 V           | 100/400 V           |             |             |
|                    | Busb. voltage      | primary      | 0.050 to 65.000 kV              | 6 300/0 400 kV      | +           |             |
|                    | Busb. voltage      | secondary    | 50 to 125/50 to 480 V           | 100/400 V           | -           |             |
|                    | Mains voltage      | primary      | 0.050/65.000 kV                 | 6.300/0.400 kV      | 1           |             |
|                    | Mains voltage      | secondary    | 50 to 125/50 to 480 V           | 100/400 V           |             |             |
|                    | VoltMeasuring      |              | Phase to phase<br>Phase-neutral | Phase to phase      | □ p-p □ p-n | □ p-p □ p-n |
|                    | Current transf.    | Generator    | 0 to 6.900/x A                  | 1,000/x A           |             |             |
|                    | Format power       |              | 1 to 6                          | 3                   |             |             |
|                    | Current transf.    | Mains        | 0 to 6.900/x A                  | 100/x A             |             |             |
|                    | Power measuring    | Gen.         | one-phase / three-phase         | three-phase         |             |             |
|                    | Nominal power      | Gen.         | 5 to 32,000 kW                  | 500 kW              |             |             |
| CONI               | FIGURE CONTROL     | LER          |                                 |                     |             |             |
|                    | Controller disc.   | neg. load j. | ON/OFF                          | OFF                 | □ ON □ OFF  | □ ON □ OFF  |
|                    | Admissible act.    | power jump   | 10 to 80 %                      | 22 %                |             |             |
|                    | Controller dis-    | connection   | 1 to 99 s                       | 5 s                 |             |             |
|                    | Download and       | open GCB     | ON/OFF                          | OFF                 | ON OFF      | ON OFF      |
|                    | Control in no-     | load oper.   | ON/OFF                          | OFF                 | ON OFF      | ON OFF      |
|                    | Freq. controller   |              | ON/OFF                          | ON                  | ON OFF      | ON OFF      |
|                    | Generator freq.    | f set        | 40.0 to 70.0 Hz                 | 50.0 Hz             |             |             |
|                    | Freq. controller   | Insens.      | 0.02 to 1.00 Hz                 | 0.10 Hz             |             |             |
|                    | Freq. controller   | Time pulse>  | 10 to 250 ms                    | 70 ms               |             |             |
| 1                  | Freq. controller   | Gain Kp      | 0.1 to 99.9                     | 200                 |             |             |

| Pkg.   | Parameter<br>100/400V         | Adjustment range          | Standard<br>setting | Customer settings    |                      |
|--------|-------------------------------|---------------------------|---------------------|----------------------|----------------------|
| CONT   | UCLIDE CONTROL LED            |                           |                     |                      |                      |
| CONF   | Volt controller               | ON/OFF                    | ON                  |                      |                      |
|        | Volt controller Isol oper     | ON/OFF<br>ON/OFF          | ON                  |                      |                      |
|        | Gen voltage V set             | 90 to 125/200 to 480 V    | 100/400 V           |                      |                      |
|        | Setpoint ramp V set           | 1 to 400 V/s              | 80 V/s              |                      |                      |
|        | Volt. controller Insens.      | 0.5 to 15.0/0.5 to 60.0 V | 2.5 V               |                      |                      |
|        | Volt. controller Time pulse>  | 10 to 250 ms              | 70 ms               |                      |                      |
|        | Volt. controller Gain Kp      | 0.1 to 99.9               | 20.0                |                      |                      |
| MFR 2S | Synchronization functions     | ON/OFF                    | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|        | Synchronization df max        | 0.02 to 0.49 Hz           | 0.18 Hz             |                      |                      |
|        | Synchronization df min        | 0.00 to -0.49 Hz          | -0.10 Hz            |                      |                      |
|        | Synchronization dU max        | 1 to 20/2 to 60 V         | 5/20 V              |                      |                      |
|        | Synchronization Time pulse>   | 50 to 250 ms              | 240 ms              |                      |                      |
|        | Gen. circuit br. Pick-up t.   | 40 to 300 ms              | 80 ms               |                      |                      |
|        | Gen. circuit br. Cont. pulse  | ON/OFF                    | OFF                 | $\Box$ ON $\Box$ OFF | □ ON □ OFF           |
| MFR 2S | Mains circuit br. Pick-up t.  | 40 to 300 ms              | 80 ms               |                      |                      |
| MFR 2A | Connecting Gen circuit br.    | ON/OFF                    | ON                  | $\Box$ ON $\Box$ OFF | $\Box$ ON $\Box$ OFF |
|        | Connect Gen. CB df max        | 0.05 to 2.00 Hz           | 0.18 Hz             |                      |                      |
|        | Connect Gen. CB df min        | 0.00 to 2.00 Hz           | -0.10 Hz            |                      |                      |
|        | Connect Gen. CB Time pulse>   | 50 to 250 ms              | 240 ms              |                      |                      |
| MFR 2A | Gen. circuit br. Cont. pulse  | ON/OFF                    | OFF                 |                      |                      |
|        | Gen. circuit br.Dead bus op.  | ON/OFF                    | OFF                 | □ ON □ OFF           | LI ON LI OFF         |
|        | Dead bus op. GCB df max       | 0.05 to 0.90 Hz           | 0.25 Hz             |                      |                      |
|        | Dead bus op. GCB du max       | 1 to 20/2 to 60 V         | 10 V                |                      |                      |
|        | Mains circuit bibead bus op.  | ON/OFF                    | OFF                 |                      |                      |
|        | Sync.time contr. Delay time   | 10 to 000 s               | 120 s               |                      |                      |
|        | Power factor Controller       | 10 10 399 S               | 120 S               |                      |                      |
|        | Pow fact, contr. Setpoint 1   | i0.70 to 1.00 to c0.70    | 1.00                |                      |                      |
|        | Pow.fact. contr. Setpoint 2   | i0.70 to 1.00 to c0.70    | i0.80               |                      |                      |
|        | Setpoint ramp Pf set          | 0.05 to 0.30 /s           | 0.30 /s             |                      |                      |
|        | Pow.fact. contr. Insens.      | 0.5 to 25.0 %             | 1.0 %               |                      |                      |
|        | Pow.fact. contr. Gain Kp      | 0.1 to 99.9               | 5.0                 |                      |                      |
|        | Power controller              | ON/OFF                    | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|        | Power controller ramp =000%/s | 1 to 100 %/s              | 10 %/s              |                      |                      |
|        | Power limitation P max        | 10 to 120 %               | 100/127 %           |                      |                      |
|        | Power controller P set1       | 5 to 32,000 kW            | 250 kW              |                      |                      |
|        | Power controller P set2       | 5 to 32,000 kW            | 500 kW              |                      |                      |
| PSVA   | Set value extern PowContr     | ON/OFF                    | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|        | Analog input 0/4-20mA         | 0 to 20/4 to 20 mA        | 4 to 20 mA          |                      |                      |
|        | Analog input 0/4 mA           | 0 to 32,000 kW            | 0                   |                      |                      |
| PSVA   | Analog input 20 mA            | 0 to 32,000 kW            | 500 kW              |                      |                      |
|        | Power controller Insens.      | 0.1 to 25.0 %             | 2.0 %               |                      |                      |
|        | Power controller Gain Kp      | 0.1 to 99.9               | 20.0                |                      |                      |
|        | Power controller Sens.red.    | 1.0 to 9.9                | 2.0                 |                      |                      |
|        | Power controller Gain Kp      | 1  to  240                | 0                   |                      |                      |
|        | Derivative act time(port)     | 0.0 to 60.0 s             | 0.0 S               |                      |                      |
|        | Part-load lead                | 0.0 10 0.0 S              | 5.50 S              |                      |                      |
|        | Part-load lead Setpoint       | 5 to 110 %                | 15/10 %             |                      |                      |
|        | Part-load lead Time           | 0 to 600 s                | 10/17/0<br>5 c      |                      |                      |
|        | Active power load-share       | ON/OFF                    | OFF                 |                      |                      |
|        | Act. load share factor        | 10 to 99 %                | 50 %                |                      |                      |
|        | Reactive power load-share     | ON/OFF                    | OFF                 | □ ON □ OFF           | □ ON □ OFF           |
|        | React load share factor       | 10 to 99 %                | 50 %                |                      |                      |

| Pkg. | Parameter<br>100/400V        | Adjustment range                | Standard<br>setting | Customer settings    |                      |
|------|------------------------------|---------------------------------|---------------------|----------------------|----------------------|
| CONF | IGURE MONITORING             |                                 |                     |                      |                      |
|      | Overload power Monitoring    | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Gen. Overload Max. power     | 80 to 120 %                     | 110 %               |                      |                      |
|      | Gen. overload Delay          | 0.1 to 600.0 s                  | 3.0.5               |                      |                      |
|      | Gen. Overload Relay outp.    | 0 to 4                          | 0002                |                      |                      |
|      | Reverse power monitoring     | ON/OFF                          | ON                  | $\Box$ on $\Box$ off | Π ON Π OFF           |
|      | Reverse power Threshold      | +99  to  0  to  -99 %           | -10 %               |                      |                      |
|      | Reverse power Delay          | 0.1 to 99.9 s                   | 0.1 s               |                      |                      |
|      | Reverse power Relay outp.    | 0 to 4                          | 0002                |                      |                      |
|      | Load unbalance Monitoring    | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Load unbalance Threshold     | 0 to 100 %                      | 20 %                |                      |                      |
|      | Load unbalance Delay         | 0.04 to 99.98 s                 | 0.10 s              |                      |                      |
|      | Load unbalance Relay outp.   | 0 to 4                          | 0002                |                      |                      |
|      | Overcurrent monitoring       | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Overcurrent Thresh. 1        | 0 to 300 %                      | 120 %               |                      |                      |
|      | Overcurrent Delay 1          | 0.04 to 99.98 s                 | 0.1 s               |                      |                      |
|      | Overcurrent 1 Relay outp.    | 0 to 4                          | 0002                |                      |                      |
|      | Overcurrent Thresh. 2        | 0 to 300 %                      | 140 %               |                      |                      |
|      | Overcurrent Delay 2          | 0.04 to 99.98 s                 | 0.1 s               |                      |                      |
|      | Overcurrent 2 Relay outp.    | 0 to 4                          | 0002                |                      |                      |
|      | Lagg.react.power monitoring  | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Lagg.react.power Threshold   | 0 to 160 %                      | 79 %                |                      |                      |
|      | Lagg.react.power Delay       | 0.04 to 99.98 s                 | 0.1 s               |                      |                      |
|      | Lagg.react.power Relay outp. | 0 to 4                          | 0002                |                      |                      |
|      | Lead.react.power monitoring  | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Lead.react.power Threshold   | 0 to 160 %                      | 79 %                |                      |                      |
|      | Lead.react.power Delay       | 0.04 to 99.98 s                 | 0.1 s               |                      |                      |
|      | Lead.react.power Relay outp. | 0 to 4                          | 0002                |                      |                      |
|      | Gen. frequency Monitoring    | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Gen. overfreq. f >           | 40.0 to 70.0 Hz                 | 55.00 Hz            |                      |                      |
|      | Gen. overfreq. Delay         | 0.04 to 9.98 s                  | 0.50 s              |                      |                      |
|      | Gen. overfreq. Relay outp.   | 0 to 4                          | 0002                |                      |                      |
|      | Gen. underfreq. f <          | 40.0 to 70.0 Hz                 | 45.00 Hz            |                      |                      |
|      | Gen. underfreq. Delay        | 0.04 to 9.98 s                  | 0.50 s              |                      |                      |
|      | Gen. underfreq. Relay outp.  | 0 to 4                          | 0002                |                      |                      |
|      | Gen. voltage Monitoring      | ON/OFF                          | ON                  | $\Box$ ON $\Box$ OFF | $\Box$ ON $\Box$ OFF |
|      | Rated voltage Gen. Vn =      | 50 to 125/50 to 480V            | 400 V               |                      |                      |
|      | Volt. Monit.Gen.             | Phase to phase<br>Phase-neutral | Phase to phase      | □ p-p □ p-n          | □ p-p □ p-n          |
|      | Gen. overvolt. V >           | 20 to 150 %                     | 115 %               |                      |                      |
|      | Gen. overvolt. Delay         | 0.04 to 9.98 s                  | 0.50 s              |                      |                      |
|      | Gen. overvolt. Relay outp.   | 0 to 4                          | 0002                |                      |                      |
|      | Gen. undervolt V <           | 20 to 150 %                     | 85 %                |                      |                      |
|      | Gen. undervolt. Delay        | 0.04 to 9.98 s                  | 0.50 s              | ļ                    |                      |
|      | Gen. undervolt. Relay outp.  | 0 to 4                          | 0002                |                      |                      |
|      | Mains frequency Monitoring   | ON/OFF                          | ON                  | □ ON □ OFF           | □ ON □ OFF           |
|      | Mains overfreq. f >          | 40.0 to 70.0 Hz                 | 50.20 Hz            |                      |                      |
|      | Mains overfreq. Delay        | 0.04 to 9.98 s                  | 0.10 s              |                      |                      |
|      | Mains overfreq. Relay outp.  | 0 to 4                          | 0001                | ļ                    |                      |
|      | Mains underfreq. f <         | 40.0 to 70.0 Hz                 | 49.80 Hz            |                      |                      |
|      | Mains underfreq. Delay time  | 0.04 to 9.98 s                  | 0.10 s              |                      |                      |
|      | Mains underfreq. Relay outp. | 0 to 4                          | 0001                |                      |                      |

| Pkg.     | Parameter<br>100/400V        | Adjustment range               | Standard<br>setting | Customer settings        |                          |
|----------|------------------------------|--------------------------------|---------------------|--------------------------|--------------------------|
| CONT     |                              |                                |                     |                          |                          |
| CONF     | IGURE MONITORING             | ON/OFF                         | ON                  |                          |                          |
|          | Mains voltage monitoring     | 0N/0FF<br>50 to 125/50 to 480V | 0N<br>400 V         |                          |                          |
|          | Kated Voitage Mains VII -    | Dhase to phase                 | 400 V               |                          |                          |
|          | Volt. Monit.Mains            | Phase-neutral                  | Phase to phase      | □ p-p □ p-n              | 🗆 р-р 🗆 р-п              |
|          | Mains overvolt. V >          | 20 to 150 %                    | 110 %               |                          |                          |
|          | Mains overvolt. Delay        | 0.04 to 9.98 s                 | 0.10 s              |                          |                          |
|          | Mains overvolt. Relay outp.  | 0 to 4                         | 0001                |                          |                          |
|          | Mains undervolt. V <         | 20 to 150 %                    | 90 %                |                          |                          |
|          | Mains undervolt. Delay       | 0.04 to 9.98 s                 | 0.10 s              |                          |                          |
|          | Mains undervolt. Relay outp. | 0 to 4                         | 0001                |                          |                          |
|          | Asymmetry Monitoring         | ON/OFF                         | OFF                 | □ ON □ OFF               | □ ON □ OFF               |
|          | Asymmetry Threshold          | 0 to 99 %                      | 40 %                |                          |                          |
|          | Asymmetry Delay              | 0.04 to 99.98 s                | 0.50 s              |                          |                          |
|          | Asymmetry Relay outp.        | 0 to 4                         | 0001                |                          |                          |
|          | Phase shift- Monitoring      | ON/OFF                         | OFF                 | $\Box$ ON $\Box$ OFF     | $\Box$ ON $\Box$ OFF     |
|          | Phase shift                  | one/three-phase                | three-phase only    |                          |                          |
|          |                              | three-phase only               |                     |                          | _ 1/5 _ 5                |
|          | Phase-shift (One phase)      | 2 to 90 °                      | 30 °                |                          |                          |
|          | Phase-shift (3-phase)        | 2 to 90 °                      | 8 °                 |                          |                          |
|          | Phase-shift Relay outp.      | 0104                           | 0001                |                          |                          |
|          | di/dt- Monitoring            |                                | OFF<br>2.6 Hg/g     |                          |                          |
|          | Time delay df/dt             | 1.0 to 9.9 Hz/s                | 2.0 HZ/S            |                          |                          |
|          | df/dt monitoring Relay outp  | 0.1 to 4                       | 0.1 \$              |                          |                          |
|          | Mains decoupling through     | GCB/MCB                        | MCB                 |                          |                          |
|          | Batt, undervolt. V <         | 10.0 to 35.0 V                 | 20.0 V              |                          |                          |
|          | Batt. undervolt. Relay outp. | 0 to 4                         | 0003                |                          |                          |
|          | Central alarm Relay outp.    | 0 to 4                         | 0003                |                          |                          |
|          | Monitoring ON after          | 1 to 99 s                      | 5 s                 |                          |                          |
|          | Monitoring ON at f gen >     | 15 to 70 Hz                    | 15 Hz               |                          |                          |
|          | f Gen > xx Hz Relay outp.    | 0 to 4                         | 0000                |                          |                          |
| CONF     | IGURE OUTPUTS                | •                              |                     |                          |                          |
| PSVA     | Pulse/kWh Logic              | positive/negative              | positive            | $\Box$ pos. $\Box$ neg.  | $\Box$ pos. $\Box$ neg.  |
|          | Active energy Pulse/kWh      | 0,1 to 150,0                   | 10,0                |                          |                          |
|          | Pulse/kvarh Logic            | positive/negative              | positive            | □ pos. □ neg.            | $\Box$ pos. $\Box$ neg.  |
|          | Reactive energy P./kvarh     | 0,1 to 150,0                   | 10,0                |                          |                          |
|          | Pulse/kvarh Type             | leading / lagging              | lagging             | □ lead. □ lag.           | □ lead. □ lag.           |
|          | Analog out. 80/81            | 0 to 20 / 4 to 20 mA / OFF     | OFF                 | $\Box 0 \Box 4 \Box Off$ | $\Box 0 \Box 4 \Box Off$ |
|          | Analog out 80/81             | according to list              | -                   |                          |                          |
|          | Analog output 0 mA           | 0 to max                       | -                   |                          |                          |
|          | Analog output 20 mA          | 0 to max                       | -                   |                          |                          |
|          | Analog out. 82/83            | 0 to 20 / 4 to 20 mA / OFF     | OFF                 |                          |                          |
|          | Analog out 82/83             | according to list              | -                   |                          |                          |
| <br>DSVA | Analog output 0 mA           | 0 to max                       | -                   |                          |                          |
| CONT     |                              | 0 to max                       | -                   |                          |                          |
| CONF     | IGUKE INTERFACE              | ONVOFE                         | OFF                 |                          |                          |
| CONT     |                              | UN/OFF                         | OFF                 |                          |                          |
| CONF     | CONFIGURE COUNTER            |                                |                     |                          |                          |
|          | Service interval in          | 0 to 9,999 h                   | 300 h               | +                        |                          |
|          | Set counter of starts        | 0 to 05,000 h                  | 0 1                 |                          |                          |
|          | energy counter staffs        | 0 10 49,999                    | Maga                | 1                        |                          |
|          | Set pos. active energy       | 0 to 65 500 xWb                | 0 xW/h              |                          |                          |
|          | Set neg. active. energy      | 0 to 65 500 xWh                | 0 xWh               |                          |                          |
|          | Set lagg. react. ener.       | 0 to 65,500 xvarh              | 0 xvarh             | 1                        |                          |
|          | Set lead. react. ener.       | 0 to 65,500 xvarh              | 0 xvarh             | 1                        |                          |

| Pkg.                | Parameter<br>100/400V      | Adjustment range | Standard<br>setting | Customer settings |  |  |  |
|---------------------|----------------------------|------------------|---------------------|-------------------|--|--|--|
| CONI                | CONFIGURE DISCRETE INPUTS  |                  |                     |                   |  |  |  |
|                     | Dig. input 234 Function:   | E/R              | EEE                 |                   |  |  |  |
|                     | Dig. input 5678 Function:  | E/R              | EEEE                |                   |  |  |  |
|                     | Dig. input 5678 delayed    | Y/N              | NNNN                |                   |  |  |  |
|                     | Dig. input 5678 Err. class | 0 to 3           | 0000                |                   |  |  |  |
|                     | Fault text: t. 61          | Any              | Terminal 61         |                   |  |  |  |
|                     | Fault text: t. 62          | Any              | Terminal 62         |                   |  |  |  |
|                     | Fault text: t. 63          | Any              | Terminal 63         |                   |  |  |  |
|                     | Fault text: t. 64          | Any              | Terminal 64         |                   |  |  |  |
|                     |                            |                  |                     |                   |  |  |  |
|                     |                            |                  |                     |                   |  |  |  |
| CONFIGURE PASSWORDS |                            |                  |                     |                   |  |  |  |
|                     | Define level 1 code        | 0000 to 9999     | 0001                |                   |  |  |  |
|                     | Define level 2 code        | 0000 to 9999     | 0002                |                   |  |  |  |

## Appendix E. Service Options

## **Product Service Options**

### 

The following factory options are available for servicing Woodward equipment, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is purchased from Woodward or the service is performed. If you are experiencing problems with installation or unsatisfactory performance of an installed system, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter) and discuss your problem. In most cases, your problem can be resolved over the phone. If not, you can select which course of action you wish to pursue based on the available services listed in this section.

## **Returning Equipment For Repair**

#### 

If a control (or any part of an electronic control) is to be returned to Woodward for repair, please contact Woodward in advance to obtain a Return Authorization Number. When shipping the unit(s), attach a tag with the following information:

- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part numbers (P/N) and serial number (S/N);
- description of the problem;
- instructions describing the desired repair.



## CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*  Use the following materials when returning a complete control:

- protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls;
- a strong tape around the outside of the carton for increased strength.

### **Return Authorization Number RAN**

When returning equipment to Woodward, please telephone and ask for the Customer Service Department in Stuttgart [+49 (0) 711 789 54-0]. They will help expedite the processing of your order through our distributors or local service facility. To expedite the repair process, contact Woodward in advance to obtain a Return Authorization Number, and arrange for issue of a purchase order for the unit(s) to be repaired. No work can be started until a purchase order is received.



NOTE

We highly recommend that you make arrangement in advance for return shipments. Contact a Woodward customer service representative at +49 (711) 789 54-0 for instructions and for a Return Authorization Number.

## **Replacement Parts**

#### 

When ordering replacement parts for controls, include the following information:

- the part numbers P/N (XXXX-XXX) that is on the enclosure nameplate;
- the unit serial number S/N, which is also on the nameplate.

## **How To Contact Woodward**

### 

Please contact following address if you have questions or if you want to send a product for repair:

Woodward GmbH Handwerkstrasse 29 70565 Stuttgart - Germany

 Phone:
 +49 (0) 711 789 54-0
 (8:00 - 16:30 German time)

 Fax:
 +49 (0) 711 789 54-100
 e-mail:
 stgt-info@woodward.com

For assistance outside Germany, call one of the following international Woodward facilities to obtain the address and phone number of the facility nearest your location where you will be able to get information and service.

| Facility        | Phone number       |
|-----------------|--------------------|
| USĂ             | +1 (970) 482 5881  |
| India           | +91 (129) 409 7100 |
| Brazil          | +55 (19) 3708 4800 |
| Japan           | +81 (476) 93 4661  |
| The Netherlands | +31 (23) 566 1111  |
|                 |                    |

You can also contact the Woodward Customer Service Department or consult our worldwide directory on Woodward's website (**www.woodward.com**) for the name of your nearest Woodward distributor or service facility. [For worldwide directory information, go to **www.woodward.com/ic/locations**.]

## **Engineering Services**

#### 

Woodward Industrial Controls Engineering Services offers the following after-sales support for Woodward products. For these services, you can contact us by telephone, by e-mail, or through the Woodward website.

- Technical support
- Product training
- Field service during commissioning

**Technical Support** is available through our many worldwide locations, through our authorized distributors, or through GE Global Controls Services, depending on the product. This service can assist you with technical questions or problem solving during normal business hours. Emergency assistance is also available during non-business hours by phoning our toll-free number and stating the urgency of your problem. For technical engineering support, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference technical support.

**Product Training** is available on-site from several of our worldwide facilities, at your location, or from GE Global Controls Services, depending on the product. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability. For information concerning training, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference *customer training*.

**Field Service** engineering on-site support is available, depending on the product and location, from our facility in Colorado, or from one of many worldwide Woodward offices or authorized distributors. Field engineers are experienced on both Woodward products as well as on much of the non-Woodward equipment with which our products interface. For field service engineering assistance, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference *field service*.

## **Technical Assistance**

### 

If you need to telephone for technical assistance, you will need to provide the following information. Please write it down here before phoning:

## Contact

| Your company            |       |      |  |
|-------------------------|-------|------|--|
| Your name               |       |      |  |
| Phone number            |       |      |  |
| Fax number              |       |      |  |
| Control (coo nome plate |       |      |  |
| Unit no. and Revision:  | P/N:  | REV: |  |
| Unit type               | MFR 2 |      |  |
| Serial number           | S/N   |      |  |
| Description of your pro | blem  |      |  |
|                         |       |      |  |
|                         |       |      |  |
|                         |       |      |  |
|                         |       |      |  |
|                         |       |      |  |
|                         |       |      |  |
|                         |       |      |  |

Please be sure you have a list of all parameters available.

We appreciate your comments about the content of our publications. Please send comments to: <u>stgt-documentation@woodward.com</u> Please include the manual number from the front cover of this publication.



Woodward GmbH Handwerkstrasse 29 - 70565 Stuttgart - Germany Phone +49 (0)711 / 789 54-0 • Fax +49 (0)711 / 789 54-100 stgt-info@woodward.com

#### Homepage

http://www.woodward.com/power

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address/phone/fax/e-mail information for all locations is available on our website (www.woodward.com).

2007/12/Stuttgart