

DTSC-200 ATS Controller

Configuration Software Version 2.0xxx

WARNING

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

CAUTION

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

OUT-OF-DATE PUBLICATION

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website:

http://www.woodward.com/pubs/current.pdf

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:

http://www.woodward.com/publications

If your publication is not there, please contact your customer service representative to get the latest copy.

Important definitions

WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.

NOTE

Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward All Rights Reserved.

Page 2/158 © Woodward

Revision History

Rev.	Date	Editor	Changes	
В	2013-09-18	GG	New parameters 8820 and 8821 added for a special application of In-Phase monitoring (Sync Check). In application mode Util-Util it is possible to define a phase angle range for transfer condition. See chapter "Monitoring: Load transfer between two utility sources with special (phase angle) conditions" on page 78 for more details. New LogicsManager 19.21 and 19.22 S1/S2 failed status and 20.22 Synch. Check active. See chapter Logical Command Variables: [19.00] - ATS Status Flags and Logical Command Variables: [20.00] - ATS Status Flags on page 132 for more details.	
			Manual Correction: Default setting of parameter 4570 In-phase monitor is "OFF" (see page 145). Setting range of parameter 4577 explains now special value 0.10 (see page 81). List of parameters updated. Minor changes and layout optimization.	
A	12-07-11	GG	Command Variables 00.16 and 04.01 removed: no auto mode selection. New unit display language available on parameter 1700: Russian.	
			Setting range of parameters 10411 10415 changed to "1 9999".	
NEW	11_11_17	TE	Palessa Software Version 2 Ovvy Resed on 37386A	

Content

CHAPTER 1. GENERAL INFORMATION 8				
CHAPTER 2. CONFIGURATION	9			
Configuration Via The Front Panel	9			
Configuration Via PC	10			
Install ToolKit Configuration and Visualization Software	10			
Install ToolKit Software				
Install ToolKit Configuration Files				
Starting ToolKit Software				
Configure ToolKit Software				
Connect ToolKit and the DTSC-200 Unit				
View DTSC-200 Data with ToolKit				
Configure the DTSC-200 with ToolKit				
General Information				
Important Designations				
Signal and Command Abbreviations				
Monitoring Functions				
Function Of The Inputs And Outputs	20			
CHAPTER 3. PARAMETERS	22			
Language	23			
Password	_			
Event History				
Measuring				
Measuring: Rated Values				
Measuring: Transformers				
Application				
Application: Application Mode				
Application: Transfer Timers				
Application: Transfer Logics (LogicsManager)				
Application: Elevator Pre-Signal				
Application: Motor Load Disconnect	44			

Application: Source Priority Selection	45
Breaker	
Breaker: Transfer Switch Type	
Test Modes	61
Timer Exerciser	
Monitoring	
Monitoring: Alarm Acknowledgement	
Monitoring: Limit Switch Monitoring	66
Monitoring: Source 1 Monitoring	
Monitoring: Source 2 Monitoring	
Monitoring: In-Phase Monitoring (Synch Check)	
Monitoring: Overcurrent	
Monitoring: Overload	
Monitoring: Engine, Start Failure Source 1	
Monitoring: Engine, Start Failure Source 2	
Monitoring: Battery, Overvoltage	
Monitoring: Battery, Undervoltage	
Monitoring: CANopen Interface	
Discrete Inputs	
Discrete Outputs (LogicsManager)	
Counters	
Configure Counters: Operation Hours, kWh, and kvarh	
LogicsManager	
LogicsManager: Internal Flags	
LogicsManager: Timer	
Interfaces	
Interfaces: CAN Bus (FlexCAN)	
Interfaces: Serial Interface 1 (RS-232)	
Interfaces: Serial Interface 2 (RS-485)	
System	
System: Configure Display Backlight	
System: Configure Daylight Saving Time	
System: Password SystemSystem: Real-Time Clock Set	
System: Versions	120
APPENDIX A. LOGICSMANAGER	121
Logical Symbols	123
Logical Outputs	124
Logical Outputs: Internal Flags	124
Logical Outputs: Internal functions	124
Logical Outputs: Relay Outputs	125
Logical Command Variables	
Logical Command Variables: [00.00] - Internal Flags	
Logical Command Variables: [01.00] - Alarm Classes	
Logical Command Variables: [03.00] - Engine Control	
Logical Command Variables: [04.00] - Operating Status	
Logical Command Variables: [06.00] - Load Alarms	
Logical Command Variables: [08.00] - System Alarms	
Logical Command Variables: [09.00] - Discrete Inputs	
Logical Command Variables: [11.00] - Time Functions	
Logical Command Variables: [12.00] - External Discrete Inputs (Expansion Board)	
Logical Command Variables: [13.00] - Internal Relay Output Status	
Logical Command Variables: [14.00] - External Relay Outputs Status	
Logical Command Variables: [19.00] - ATS Status Flags	
Logical Command Variables: [20.00] - ATS Status Flags	
Logical Command Variables: [21.00] - ATS Alarms	
Logical Command Variables: [98.00] - LogicsManager Outputs	
Factory Setting	
Factory Setting: Functions	134

Manual 37483B	DISC-200 - AIS Controller
Factory Setting: Relay Outputs	139
Factory Setting: Internal Flags	
Discrete Inputs	
APPENDIX B. LIST OF PARAMETERS	143
APPENDIX C. SERVICE OPTIONS	
Product Service Options	
Returning Equipment For Repair	153
Packing A Control	154
Return Authorization Number RAN	154
Replacement Parts	154
How To Contact Woodward	155
Engineering Services	156
Tachnical Assistance	157

Illustrations And Tables

Illustrations

Figure 2-1: ToolKit - visualization screen	
Figure 2-2: ToolKit - analog value trending screen	
Figure 2-3: ToolKit - configuration screen	
Figure 3-1: Event history- display	
Figure 3-2: Source stable and outage timers	
Figure 3-3: External timer bypass - push button	
Figure 3-4: Elevator pre-signal - example 1	43
Figure 3-5: Elevator pre-signal - example 2	43
Figure 3-6: Elevator pre-signal - example 3	
Figure 3-7: Source priority selection - S1 preferred.	46
Figure 3-8: Source priority selection - S2 preferred	
Figure 3-9: Load shed relay wiring - standard transition switch	50
Figure 3-10: Load shed relay wiring - delayed or closed transition switch	50
Figure 3-11: Open transition switch - connected to source 1	52
Figure 3-12: Open transition switch - connected to source 2	52
Figure 3-13: Delayed transition switch - connected to source 1	54
Figure 3-14: Delayed transition switch - neutral position	
Figure 3-15: Delayed transition switch - connected to source 2	
Figure 3-16: Closed transition switch - connected to source 1	55
Figure 3-17: Closed transition switch - neutral position	55
Figure 3-18: Closed transition switch - connected to source 1 and 2 (overlap position)	55
Figure 3-19: Closed transition switch - connected to source 2	55
Figure 3-20: Breaker - transition pulse	
Figure 3-21: Test modes - load test configured for timer exerciser	62
Figure 3-22: Test modes - no-load test configured for timer exerciser	
Figure 3-23: Test modes - parameter IDs of the timer exercisers	
Figure 3-24: Test modes - configuring exerciser 1 for a daily exercise	64
Figure 3-25: Test modes - configuring exerciser 2 for a weekly exercise	
Figure 3-26: Test modes - configuring exerciser 3 for a 14-day exercise	64
Figure 3-27: Test modes - configuring exerciser 4 for a one event exercise	65
Figure 3-28: Test modes - display screen with pending exercise event	65
Figure 3-29: Test modes - display screen with running load test	65
Figure 3-30: Inphase monitoring.	77
Figure 3-31: Switch reaction time	
Figure 3-32: Monitoring - load time-overcurrent	86
Figure 3-33: Monitoring - overload	88
Figure 3-34: Monitoring - battery overvoltage	91
Figure 3-35: Monitoring - battery undervoltage	
Figure 3-36: Discrete inputs - control inputs - operation logic	
Figure 3-37: Interfaces - Principle of PDO mapping	
Figure 3-38: LogicsManager - function overview	
Figure 3-39: LogicsManager - display in ToolKit	
Figure 3-40: LogicsManager - display in LCD	123

Tables

Table 1-1: Manual - overview	8
Table 3-1: Application - load shed with standard transition switch	49
Table 3-2: Application - load shed with delayed or closed transition switch	50
Table 3-3: Monitoring - standard values - load time-overcurrent	
Table 3-4: Monitoring - standard values - overload	88
Table 3-5: Monitoring - standard values - battery overvoltage	
Table 3-6: Monitoring - standard values - battery undervoltage	
Table 3-7: Discrete inputs - assignment	96
Table 3-8: Discrete inputs - parameter IDs	97
Table 3-9: External discrete inputs - parameter IDs	97
Table 3-10: Relay outputs - Assignment	98
Table 3-11: Discrete outputs - parameter IDs	
Table 3-12: External discrete outputs - parameter IDs	99
Table 3-13: Internal flags - parameter IDs	
Table 3-14: Daylight saving time - configuration example	115
Table 3-15: Daylight saving time - examplary dates	115
Table 3-16: LogicsManager - command overview	122
Table 3-17: LogicsManager - logical symbols	123

Chapter 1. General Information

Type		English	German
DEGC 200			
DTSC-200			
DTSC-200 - Installation		37482	-
DTSC-200 - Configuration	this manual ⇒	37483	-
DTSC-200 - Operation		37484	-
DTSC-200 - Application		37485	-
DTSC-200 - Interfaces		37486	-

Table 1-1: Manual - overview

Intended Use The unit must only be operated for the uses described in this manual. The prerequisite for a proper and safe operation of the product is correct transportation, storage, and installation as well as careful operation and maintenance.

NOTE

This manual has been developed for a unit fitted with all available options. Inputs/outputs, functions, configuration screens and other details described, which do not exist on your unit, may be ignored.

The present manual has been prepared to enable the installation and commissioning of the unit. On account of the large variety of parameter settings, it is not possible to cover every possible combination. The manual is therefore only a guide. In case of incorrect entries or a total loss of functions, the default settings can be taken from the enclosed list of parameters at the rear of this manual.

Page 8/158 © Woodward

Chapter 2. Configuration

Configuration Via The Front Panel

Operation of the unit via the front panel is explained in the operation manual 37484. This manual will familiarize you with the unit, the meanings/functions of the buttons, and the display.

© Woodward Page 9/158

Configuration Via PC

Install ToolKit Configuration and Visualization Software

NOTE

Woodward's ToolKit software is required to configure the unit via PC.

Install ToolKit Software

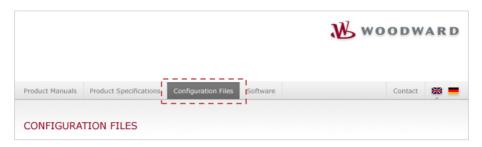
- 1. Please insert the enclosed Product CD in the CD-ROM drive of your computer
- 2. The CD is going to start automatically (autostart function needs to be activated)
- 3. Please go to the section "Software" and follow the instructions described there

Alternatively ToolKit can be downloaded from our Website. Please proceed as follows:

- 1. Go to http://www.woodward.com/software
- 2. Select ToolKit in the list and click the "Go" button
- 3. Click "More Info" to get further information about ToolKit
- 4. Choose the preferred software version and click "Download"
- 5. Now you need to login with your e-mail address or register first
- 6. The download will start immediately

Minimum system requirements for ToolKit:

- Microsoft Windows® 7, Vista SP1 or later, XP (32- & 64-bit); support for XP will end on 2014-April-8
- Microsoft .NET Framework
- 1 GHz Pentium® CPU
- 512 MB of RAM
- Minimum 800 by 600 pixel screen with 256 colors
- Serial Port
- Serial Extension Cable (null modem cable)


NOTE

Microsoft .NET Framework 4.0 must be installed on your computer to be able to install ToolKit. If not already installed, Microsoft .NET Framework will be installed automatically. You must be connected to the internet for this. Alternatively you can use the .NET Framework installer which can be found on the Product CD.

Page 10/158 © Woodward

Install ToolKit Configuration Files

- 1. Please insert the enclosed Product CD in the CD-ROM drive of your computer
- 2. The CD is going to start automatically (autostart function needs to be activated)
- 3. Please go to the section "Configuration Files" and follow the instructions described there

Alternatively ToolKit configuration files can be downloaded from our Website. Please proceed as follows:

- 1. Go to http://www.woodward.com/software/configfiles/
- 2. Please insert the part number (P/N) and revision of your device into the corresponding fields
- 3. Select ToolKit in the application type list
- 4. Click "Search"

NOTE

ToolKit is using the following files:

*.WTOOL

File name composition: [P/N1]*1-[Revision] [Language ID] [P/N2]*2-[Revision] [# of visualized

gens].WTOOL

Example file name: 8440-1234-NEW_US_5418-1234-NEW.WTOOL

Content of the file: Display screens and pages for online configuration, which are associated with

the respective *.SID file

*.SID

File name composition: [P/N2]*²-[Revision].SID Example file name: 5418-1234-NEW.SID

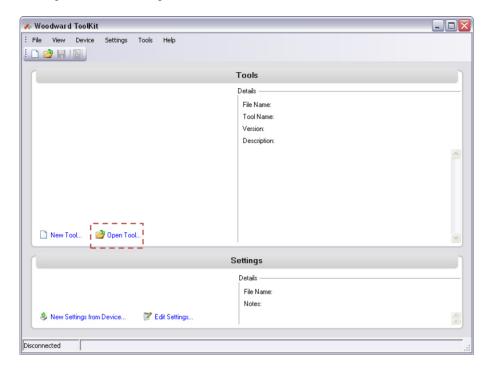
Content of the file: All display and configuration parameters available in ToolKit

*.WSET

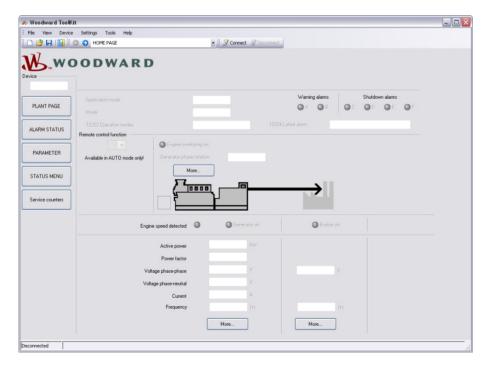
File name composition: [user defined].WSET
Example file name: DTSC-200_settings.WSET

Content of the file: Default settings of the ToolKit configuration parameters provided by the SID

file or user-defined settings read out of the unit.


© Woodward Page 11/158

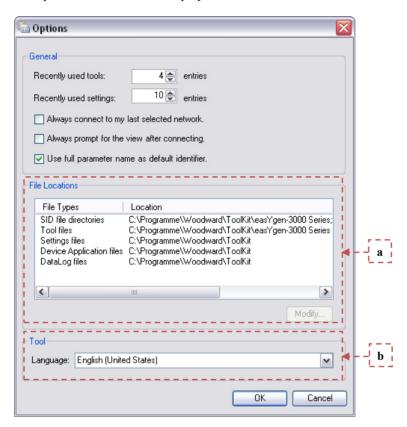
^{*1} P/N1 = Part number of the unit


^{*2} P/N2 = Part number of the software in the unit

Starting ToolKit Software

- 1. Start ToolKit via Windows Start menu -> Programs -> Woodward -> ToolKit
- 2. Please press the button "Open Tool"

- 3. Go to the "Application" folder and open then the folder equal to the part number (P/N) of your device (e.g. 8440-1234). Select the wtool file (e.g. 8440-1234-NEW_US_5418-1234-NEW.wtool) and click "Open" to start the configuration file
- 4. Now the home page of the ToolKit configuration screen appears


Page 12/158 © Woodward

Configure ToolKit Software

1. Start the configuration by using the toolbar. Please go to Tools -> Options

2. The options window will be displayed

- a. Adjust the default locations of the configuration files
- b. The displayed language can be selected here
- 3. The changes become effective after clicking "OK"

NOTE

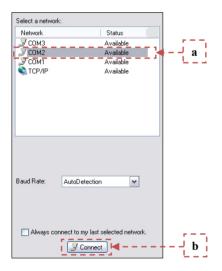
Please use the ToolKit online help for further information.

© Woodward Page 13/158

Connect ToolKit and the DTSC-200 Unit

For configuration of the unit via ToolKit please proceed as follows:

1. Plug the DPC cable into the service port. Use a USB cable/null modem cable to connect the USB/RS-232 serial port of the DPC to a serial USB/COM port of the PC with.


NOTE

The USB/RS-232 serial interface is only provided via the optional Woodward DPC (direct configuration cable), which must be connected to the service port. For additional information refer to Chapter "Service Port" in the installation manual (37482).

- 2. Open ToolKit via Windows Start menu -> Programs -> Woodward -> ToolKit
- 3. From the main ToolKit window, click File then select "Open Tool"..., or click the Open Tool icon on the tool bar.
- 4. Locate and select the desired tool file (*.WTOOL) in the ToolKit data file directory and click Open.
- 5. From the main ToolKit window, click Device then click "Connect", or select the Connect icon on the toolbar.

6. The connect dialog window will open if the option is enabled.

- a. Select the COM port that is connected to the communication cable.
- b. Click the "Connect" button.
- 7. The identifier of the device that ToolKit is connected to, will display in the status bar.
- 8. If the Communications window opens, select "ToolConfigurator" under Tool Device and close the Communications window.

- 9. If the device is security enabled, the Login dialog will appear.
- 10. Now you are able to edit the DTSC-200 parameters in the main window. Any changes made are written to the control memory automatically.

Page 14/158 © Woodward

SID Files for Using ToolKit on the CAN Bus With Other CANopen Devices

If a PC with ToolKit is connected to the DTSC-200 via a CAN bus with other external CANopen devices (like a Phoenix Contact I/O expansion board, for example), it may happen that ToolKit cannot establish a connection with the DTSC-200 because it looks for a SID file for such an external device, which does not exist. A special *.sid file can be created in this case. Contact Woodward for support or create a *.sid file with the following content:

- <?xml version="1.0" encoding="utf-8"?>
- <ServiceInterfaceDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" Identifier="[add the required device application name here]" Specification="EmptyFile">
- </ServiceInterfaceDefinition>

The file name must be the same as the Identifier plus the extension *.sid. The file must be stored to the configured SID file directory.

NOTE

Depending on the computer used and the installed operation system, problems with the communication via an infrared connection may occur.

NOTE

If your computer is equipped with a Bluetooth interface please deactivate it temporarily in the Windows system control menu in the case that ToolKit is freezing building up a connection.

NOTE

It is also possible to connect to the unit via CAN bus. If a suitable CAN adapter is used, this may be selected in the Connect window. We recommend using the IXXAT USB-to-CAN converter using the VCI V3 driver.

Be sure to configure the correct baud rate and timeout in the Properties dialog of the Connect window. The Password for CAN Interface 1 (parameter 10402 on page 117) must be entered before being able to edit the parameters.

© Woodward Page 15/158

View DTSC-200 Data with ToolKit

The following figure shows an example visualization screen of ToolKit:

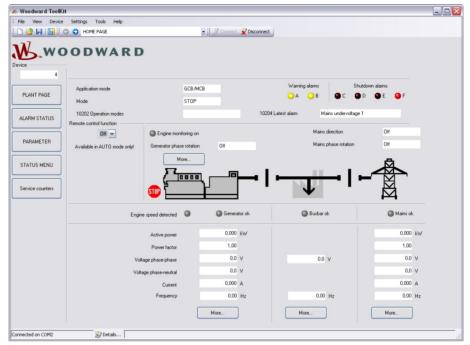


Figure 2-1: ToolKit - visualization screen

Navigation through the various visualization and configuration screens is performed by clicking on the and icons, by selecting a navigation button (e.g.), or by selecting a screen from the drop-down list to the right of the arrow icons.

It is possible to view a trend chart of up to eight values with the trending tool utility of ToolKit. The following figure shows a trending screen of the measured battery voltage value:

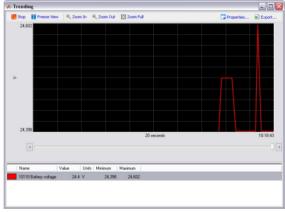


Figure 2-2: ToolKit - analog value trending screen

Each visualization screen provides for trending of monitored values by right-clicking on a value and selecting the "Add to trend" function. Trending is initiated by clicking on the Start button. Clicking the Export... button will save the trend data to a Comma Separated Values (CSV) file for viewing, editing or printing with office software, like Microsoft Excel, etc. The Properties... button is used to define high and low limits of the scale, sample rate, displayed time span and color of the graph. The trend functionality is not available if ToolKit is used utilizing a CAN bus connection to the unit.

Page 16/158 © Woodward

Configure the DTSC-200 with ToolKit

The following figure shows an example configuration screen of ToolKit:

Figure 2-3: ToolKit - configuration screen

Entering a new value or selecting a value from a defined list will change the value in a field. The new value is written to the controller memory by changing to a new field or pressing the Enter key.

Navigation through the various configuration and visualization screens is performed by clicking on the and constant icons, by selecting a navigation button (e.g. status equal), or by selecting a screen from the drop-down list to the right of the arrow icons.

© Woodward Page 17/158

General Information

The DTSC-200 has been developed to control ATS (Automatic Transfer Switch) units.

The main purpose of the ATS controller is to control and monitor the transfer switch as well as issuing an engine start signal to a connected genset control. The controller is continuously monitoring the presence of a source. If the preferred source fails, it attempts to transfer to a second source (emergency power supply, etc.).

It is NOT the task of an ATS controller to monitor a start/stop sequence. Start and stop failures will be displayed, but have no effect on the functionality of the controller. Only switch failures or problems with connected position limit switches, which signal the actual position of the ATS (connected with utility or connected with emergency power supply, etc.) to the controller, block the ATS controller for further automatic functions.

Important Designations

- Source 1 Usually the preferred power source, e.g. utility supply (depends on application)
- Source 2 Usually the emergency power source, e.g. genset (depends on application)
- Transfer Change from one source to the other

Signal and Command Abbreviations

- S1 Signal: breaker in source 1 position
- S2 Signal: breaker in source 2 position
- S1O Signal: breaker in source 1 OPEN position
- S2O Signal: breaker in source 2 OPEN position
- C1 Command: close to source 1
- C2 Command: close to source 2
- C1O Command: open from source 1
- C2O Command: open from source 2

Page 18/158 © Woodward

Monitoring Functions

Source Monitoring

- Overvoltage / undervoltage
- Overfrequency / underfrequency
- Voltage imbalance
- Rotation field monitoring

NOTE

If one of these monitoring functions is triggered, the ATS controller attempts to change to the non-preferred source.

Load Monitoring

- Overload
- Overcurrent

Switch Monitoring

- Monitoring for plausible position feedback
- Monitoring for transfer failure

NOTE

If one of these monitoring functions is triggered, then all automatic transfers are blocked.

Generator Monitoring

- Unintended stop
- Start failure

Battery Monitoring

• Overvoltage / undervoltage

Interface Monitoring

• Monitoring of the CANopen communication

© Woodward Page 19/158

Function Of The Inputs And Outputs

Discrete Inputs

The discrete inputs are grouped into two categories:

• programmable

The programmable discrete input has been programmed with a factory default function using the *LogicsManager*. The following text describes how these functions may be changed using the *LogicsManager*.

fixed

The discrete input has a specific function that cannot be changed. The discrete input cannot be used in the *LogicsManager*.

NOTE

Depending on the configured transfer switch type (parameter 3424); the discrete inputs can be "programmable" or "fixed". Please refer to Table 3-7 on page 96.

Reply from ATS limit switch: Breaker in source 1 position ⇒ Note: Normally closed (break) contact!

fixed to discrete input [DI 1], terminal 51/50

This discrete input indicates to the control that the breaker is closed to source 1 position if it is denergized (logic "0").

Reply from ATS limit switch: Breaker in source 2 position ⇒ Note: Normally closed (break) contact!

fixed to discrete input [DI 2], terminal 52/50

This discrete input indicates to the control that the breaker is closed to source 2 position if it is deenergized (logic "0").

Reply from ATS limit switch: Breaker in source 1 open position ⇒ Note: Normally closed (break) contact!

fixed to discrete input [DI 3], terminal 53/50

This discrete input indicates to the control that the breaker is in source 1 open position if it is denergized (logic "0"). This discrete input is *programmable* when transfer switch type is configured as standard.

Reply from ATS limit switch: Breaker in source 2 open position ⇒ Note: Normally closed (break) contact!

fixed to discrete input [DI 4], terminal 54/50

This discrete input indicates to the control that the breaker is in source 2 open position if it is denergized (logic "0"). This discrete input is *programmable* when transfer switch type is configured as standard.

Disconnect switch: Inhibit ATS

programmable to discrete input [DI 5], terminal 55/50

⇒ Note: Normally closed (break) contact!

This discrete input indicates to the control that the disconnect switch is actuated. If this discrete input is de-energized (logic "0"), the "Inhibit ATS" function is enabled.

Control Inputs

programmable to discrete inputs [DI 6] through [DI 12], terminals 56 through 62 / 50

These discrete inputs may be used as control signals for functions, including priority selection, remote peak shave, inhibit transfer, etc. The control inputs can be configured freely. Please refer to Discrete Inputs on page 86.

Page 20/158 © Woodward

Relay Outputs

The discrete outputs are grouped into two categories:

• programmable

The relay output is freely programmable using the *LogicsManager* (which is described in the following text).

• pre-defined

The relay output has been pre-defined (programmed) with this function using the *LogicsManager* (which is described in the following text). The function may be changed by using the *LogicsManager*.

NOTE

The relay outputs can be "programmable" or "pre-defined" for a specific function required for the configured transfer switch type (parameter 3424). Please refer to Table 3-10 on page 98.

LogicsManager Relay {all}

programmable to relay [R1] through [R3], terminals 32 through 34 / 31

⇒ Note: Normally open (make) contact!

All relays not assigned a defined function, may be configured via the *LogicsManager*.

LogicsManager Relay {all}

programmable to relay [R4], terminals 35/36/37

⇒ Note: Change-over contact!

All relays not assigned a defined function, may be configured via the *LogicsManager*.

Start engine {all}

pre-defined to relay [R5], terminals 39/40/41

⇒ Note: Change-over contact!

By energizing (or de-energizing, depending on the utilized contact) this relay an engine start signal will be issued to the genset control.

Command: close to source 1 position {all}

pre-defined to relay [R6], terminals 42/43

⇒ Note: Normally open (make) contact!

By energizing this relay, a "close to source 1 position" command will be issued to the ATS.

Command: close to source 2 position {all}

pre-defined to relay [R7], terminals 44/45

⇒ Note: Normally open (make) contact!

By energizing this relay, a "close to source 2 position" command will be issued to the ATS.

Command: open from source 1 position to neutral position{all}

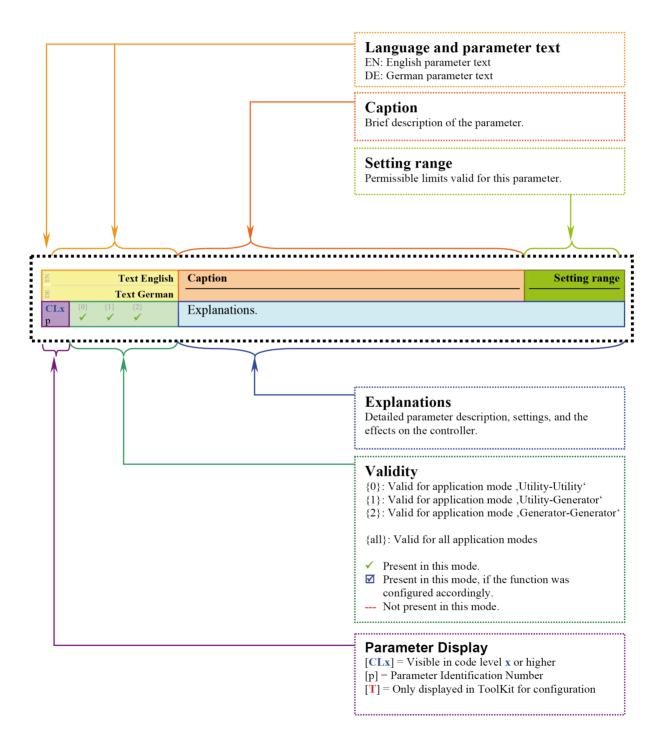
pre-defined to relay [R8], terminals 46/47

⇒ Note: Normally open (make) contact!

By energizing this relay, an "open from source 1 position to neutral position" command will be issued to the ATS.

Command: open from source 2 position to neutral position{all}

pre-defined to relay [R9], terminals 48/49


⇒ Note: Normally open (make) contact!

By energizing this relay, an "open from source 2 position to neutral position" command will be issued to the ATS.

© Woodward Page 21/158

Chapter 3. Parameters

The description of the parameters is confined to the illustration via the PC-program. The parameters are described as follows.

Page 22/158 © Woodward

Language

The following parameter is used to set the unit display language.

English / Deutsch / Español / Polski / Russian

The desired language for the unit display text is configured here.

Password

The DTSC-200 utilizes a password protected multi-level configuration access hierarchy. This permits varying degrees of access to the parameters being granted by assigning unique passwords to designated personnel. A distinction is made between the access levels as follows:

Code level CL0 (User Level)

Standard password = none

This code level permits for monitoring of the system and limited access to the parameters. Configuration of the control is not permitted. Only the parameters for setting the language, the date, the time, and the horn reset time are accessible. The unit powers up in this code level.

Code level CL1 (Basic Level)

Standard password = " $0 \ 0 \ 1$ "

This code level entitles the user to change selected non-critical parameters, such as setting the parameters accessible in CL0 plus Bar/PSI, °C/°F. The user may also change the password for level CL1. Access granted by this password expires two hours after the password has been entered and the user is returned to the CL0 level.

Code level CL2 (Temporary Commissioning Level)

No standard password available

This code level grants temporary access to most of the parameters. The password is calculated from the random number generated when the password is initially accessed. It is designed to grant a user one-time access to a parameter without having to give him a reusable password. The user may also change the password for level CL1. Access granted by this password expires two hours after the password has been entered and the user is returned to the CL0 level. The password for the temp, commissioning level may be obtained from the vendor.

Code level CL3 (Commissioning Level)

Standard password = " $0 \ 0 \ 0 \ 3$ "

This code level grants complete and total access to most of the parameters. In addition, the user may also change the passwords for levels CL1, CL2 and CL3. Access granted by this password expires two hours after the password has been entered and the user is returned to the CL0 level.

NOTE

Once the code level is entered, access to the configuration menus will be permitted for two hours or until another password is entered into the control. If a user needs to exit a code level then code level CL0 should be entered. This will block unauthorized configuration of the control. A user may return to CL0 by allowing the entered password to expire after two hours or by changing any one digit on the random number generated on the password screen and entering it into the unit.

It is possible to disable expiration of the password by entering "0000" after the CL1 or CL3 password has been entered. Access to the entered code level will remain enabled until another password is entered. Otherwise, the code level would expire when loading the standard values (default 0000) via ToolKit.

Password: Entry via front panel

0000 to 9999

The password for configuring the control via the front panel must be entered here.

© Woodward Page 23/158

Event History

The event history is a FIFO (First In/First Out) memory for logging alarm events and operation states of the unit. The capacity of the event history is 300 entries. As new event messages are entered into the history, the oldest messages are deleted once 300 events have occurred.

The individual alarm messages, which are stored in the event history, are described in detail in 'Appendix A: Alarm Messages' operation manual 37484. The operation states, which are stored in the event history, are listed in the table below.

The event history display is password-protected.

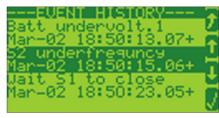


Figure 3-1: Event history- display

NOTE

The **☑** button deletes the highlighted entry!

A date/time stamp is added to each entry. Additional characters (+ and -) indicate the state of the alarm. The "+" character indicates an alarm condition that is still active. If the alarm conditions are no longer present anymore, the "+" character will be changed to "-".

Event history: Display event history

Info

Individual entries can be selected with the \Box or \Box keys and deleted from the event history with the \Box key.

NOTE

Refer to 'Appendix A: Alarm Messages' operation manual 37484 for a complete list of all entries, which may appear in the event history.

S	Clear event log		event log	Event history: Clear event history	YES / NO
E	Ereignisspeicher löschen		r löschen		
CL2 1706	{0}	{1}	{2}	YES The complete event history will be deleted. After the expression of the complete event history will be deleted.	vent history
1706	•	•	•	has been deleted, this parameter changes back to "NO"	automatically.
				NOThe event history will not be deleted.	

Page 24/158 © Woodward

Measuring

NOTE

This controller is available in two different hardware version with either 1A [../1] or 5A [../5] current transformer inputs. Both versions are discussed in this manual. The set points for specific parameters will differ depending upon the hardware version.

NOTE

It is absolutely necessary for correct rated voltage values to be entered, as many measurement and monitoring functions refer to these values.

Measuring: Rated Values

Rated system frequency

50/60 Hz

The rated frequency of the system is used as a reference figure for all frequency related functions, which use a percentage value, like frequency monitoring or breaker operation windows.

Rated voltage source 1

50 to 650,000 V

① This value refers to the rated voltage of source 1 and is the voltage measured on the potential transformer primary.

The source 1 potential transformer primary voltage is entered in this parameter. The source 1 rated voltage is used as a reference figure for all source 1 voltage related functions, which use a percentage value, like utility voltage monitoring or breaker operation windows.

Rated voltage source 2

50 to 650,000 V

① This value refers to the rated voltage of source 2 and is the voltage measured on the potential transformer primary.

The source 2 potential transformer primary voltage is entered in this parameter. The source 2 rated voltage is used as a reference figure for all source 2 voltage related functions, which use a percentage value, like utility voltage monitoring or breaker operation windows.

© Woodward Page 25/158

S1 voltage measuring
S1 Spannungsmessung
CL2 (0) (1) (2) (2) (1) (2) (2) (1) (37482).

Measurement principle: Source 1 3Ph 4W / 3Ph 3W / 1Ph 2W / 1Ph 3W (1Ph 3W / 1Ph 3W / 1P

3Ph 4WMeasurement is performed Line-Neutral (WYE connected system).

Phase voltages and the neutral must be connected for proper calculation. The measurement, display and protection are adjusted according to the rules for WYE connected systems. Monitoring refers to the following voltages:

- \bullet V_{L12}, V_{L23}, and V_{L31}, or
- V_{L1N} , V_{L2N} and V_{L3N} .

3Ph 3WMeasurement is performed Line-Line (Delta connected system).

Phase voltages must be connected for proper calculation. The measurement, display and protection are adjusted according to the rules for Delta connected systems. Monitoring refers to the following voltages:

 $\bullet V_{L12}, V_{L23}, V_{L31}.$

1Ph 2WMeasurement is performed for single-phase systems. The measurement, display and protection are adjusted according to the rules for single-phase systems. Monitoring refers to the following voltages:

 \bullet V_{L1N} , V_{L12}

1Ph 3WMeasurement is performed Line-Neutral (WYE connected system).

The measurement, display, and protection are adjusted according to the rules for single-phase systems. Monitoring refers to the following voltages:

• V_{L1N}, V_{L3N}.

Page 26/158 © Woodward

S2 voltage measuring	Measurement principle: Source 2	3Ph 4W / 3Ph 3W / 1Ph 2W / 1Ph 3W
S2 Spannungsmessung CL2 (0) (1) (2) 1861	Please refer to the comments on measuremental (37482).	uring principles in the installation
	calculation. The measuremen according to the rules for WY refers to the following voltage • V _{L12} , V _{L23} , and V _{L31} , or • V _{L1N} , V _{L2N} and V _{L3N} .	Il must be connected for proper t, display and protection are adjusted 'E connected systems. Monitoring
	Phase voltages must be conne	ected for proper calculation. The otection are adjusted according to the
	1Ph 2W Measurement is performed for measurement, display and pro	or single-phase systems. The otection are adjusted according to the s. Monitoring refers to the following
	1Ph 3W Measurement is performed La The measurement, display, ar	ine-Neutral (WYE connected system). and protection are adjusted according to tems. Monitoring refers to the
2 1Ph2W voltage measuring	Measurement principle: 1Ph 2voltage measur	ing Ph – Ph / Phase - N
CL2 {0} {1} {2} {2} {1858}	① Please refer to the comments on measurements and (37482).	uring principles in the installation
	This parameter is only visible, if parameter configured as "1Ph 2W".	1862 and/or parameter 1861 is
	Ph – PhThe phase-phase voltages are Phase - NThe phase-neutral voltages are	
IPh2W phase rotation	Measurement principle: 1Ph 2W phase rotati	on CW/CCW
Art der 1Ph2W Drehrichtung CL2 {0} {1} {2} 1859	Please refer to the comments on measurements and (37482).	uring principles in the installation
	This parameter is only visible, if parameter configured as "1Ph 2W".	1862 and/or parameter 1861 is
	CWA clockwise rotation field is a CCWA counter-clockwise rotation measuring.	

© Woodward Page 27/158

Measurement principle: S1 Load current

L1 L2 L3 / Phase L1 / Phase L2 / Phase L3

Please refer to the comments on measuring principles in the installation manual (37482).

L1 L2 L3All three phases are monitored. The measurement, display and protection are adjusted according to the rules for 3-phase measurement. Monitoring refers to the following currents:

• I_{L1} , I_{L2} , I_{L3} .

Phase L{1/2/3} Only one phase is monitored. The measurement, display and protection are adjusted according to the rules for single-phase measurement. Monitoring refers to the selected phase.

Current and power from source 1 to the load are only measured, if the transfer switch is closed to source 1 position (S1).

Parameters 1860 and 1863 must be configured identical because they share one common CT set at the load connection.

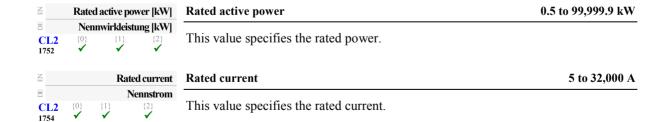
Measurement principle: S2 Load current L1 L2 L3 / Phase L1 / Phase L2 / Phase L3

① Please refer to the comments on measuring principles in the installation manual (37482).

L1 L2 L3All three phases are monitored. The measurement, display and protection are adjusted according to the rules for 3-phase measurement. Monitoring refers to the following currents:

• I_{L1}, I_{L2}, I_{L3}.

Phase L{1/2/3} Only one phase is monitored. The measurement, display and protection are adjusted according to the rules for single-phase measurement. Monitoring refers to the selected phase.


Current and power from source 2 to the load are only measured, if the transfer switch is closed to source 2 position (S2).

The parameters 1860 and 1863 must be configured identical because they share one common CT set at the load connection.

NOTE

It is absolutely necessary for correct rated power and current values to be entered, as many measurement and monitoring functions refer to these values.

Page 28/158 © Woodward

Measuring: Transformers

Voltage Transformer

Voltage transformer, source 1, primary

50 to 650,000 V

Some applications may require the use of potential transformers to facilitate measuring the source voltages. The rating of the primary side of the potential transformer on source 1 must be entered into this parameter.

If the application does not require potential transformers (i.e. the generated voltage is 480 V or less), then the source volt. will be entered into this parameter.

Voltage transformer, source 1, secondary

50 to 480 V

The control is equipped with dual voltage measuring inputs. The voltage range of these measurement inputs is dependent upon which input terminals are used (see below). This value refers to the secondary voltages of the potential transformers, which are directly connected to the control.

Some applications may require the use of potential transformers to facilitate measuring the source voltages. The rating of the secondary side of the potential transformer on source 1 must be entered into this parameter.

If the application does not require potential transformers (i.e. the generated voltage is 480 V or less), then the source volt. will be entered into this parameter.

- Rated voltage: 120 Vac (this parameter configured between 50 and 130 V)
 Source 1 voltage: Terminals 15/17/19/21
- Rated voltage: 480 Vac (this parameter configured between 131 and 480 V)
 - Source 1 voltage: Terminals 16/18/20/22

Voltage transformer, source 2, primary

50 to 650,000 V

Some applications may require the use of potential transformers to facilitate measuring the source voltages. The rating of the primary side of the potential transformer on source 2 must be entered into this parameter.

If the application does not require potential transformers (i.e. the generated voltage is 480 V or less), then the source volt. will be entered into this parameter.

Voltage transformer, source 2, secondary

50 to 480 V

The control is equipped with dual voltage measuring inputs. The voltage range of these measurement inputs is dependent upon which input terminals are used (see below). This value refers to the secondary voltages of the potential transformers, which are directly connected to the control.

Some applications may require the use of potential transformers to facilitate measuring the source voltages. The rating of the secondary side of the potential transformer on source 2 must be entered into this parameter.

If the application does not require potential transformers (i.e. the generated voltage is 480 V or less), then the source volt. will be entered into this parameter.

- Rated voltage: 120 Vac (this parameter configured between 50 and 130 V)
 Source 2 voltage: Terminals 23/25/27/29
- Rated voltage: 480 Vac (this parameter configured between 131 and 480 V)
 - Source 2 voltage: Terminals 24/26/28/30

© Woodward Page 29/158

Current Transformer

NOTE

This controller is available in two different hardware version with either 1A [../1] or 5A [../5] current transformer inputs. Both versions are discussed in this manual. The set points for specific parameters will differ depending upon the hardware version, indicated on the data plate.

- [1] DTSC-200-1 = Current transformer with ../1 A rated current
- [5] DTSC-200-5 = Current transformer with ../5 A rated current

Current transformer, load

1 to 32,000/5 A

This screen only applies to controls equipped with 5 A CT inputs. This will not be displayed in the controller screen of a unit equipped with 1 A CT inputs.

The input of the current transformer ratio is necessary for the indication and control of the actual monitored value. The current transformers ratio should be selected so that at least 60% of the secondary current rating can be measured when the monitored system is at 100% of operating capacity (i.e. at 100% of system capacity a 5 A CT should output 3 A). If the current transformers are sized so that the percentage of the output is lower, the loss of resolution may cause inaccuracies in the monitoring and control functions and affect the functionality of the control.

Current transformer, load

1 to 32,000/1 A

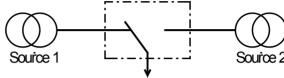
This screen only applies to controls equipped with 1 A CT inputs. This will not be displayed in the controller screen of a unit equipped with 5 A CT inputs.

The input of the current transformer ratio is necessary for the indication and control of the actual monitored value. The current transformers ratio should be selected so that at least 60% of the secondary current rating can be measured when the monitored system is at 100% of operating capacity (i.e. at 100% of system capacity a 5 A CT should output 3 A). If the current transformers are sized so that the percentage of the output is lower, the loss of resolution may cause inaccuracies in the monitoring and control functions and affect the functionality of the control.

Page 30/158 © Woodward

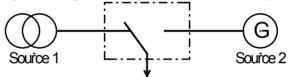
Application

Application: Application Mode

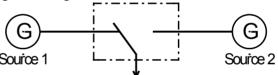

Application mode

Util-Gen / Gen-Gen / Util-Util

This parameter selects the basic function of the unit. If the unit is used to transfer the load between two utility sources (setting "Util-Util"), no engine start signals are issued.


 $\begin{tabular}{ll} \textbf{Util-Util} & Application "utility-utility" $\{0\}$ \\ \end{tabular}$

No engine start signals will be issued.


Util-Gen...... Standard application "utility-generator" {1}

Engine start signals will be issued for source 2 only.

Gen-Gen Application "generator-generator" {2}

Engine start signals will be issued for source 1 and source 2.

NOTE

In Util-Gen application, source S2 is considered as the generator.

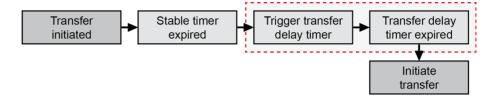
NOTE

Refer to the application chapter of the Application manual 37485 for details.

© Woodward Page 31/158

Application: Transfer Timers

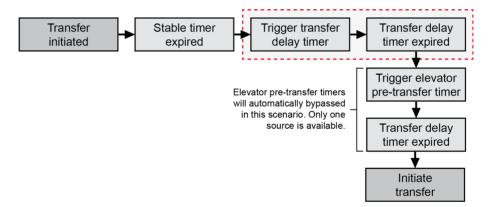
Examples transfer delay:


NOTE

Please refer to "Transfer delay timer S1->S2" (parameter 4496) and "Transfer delay timer S2->S1" (parameter 4497) for details.

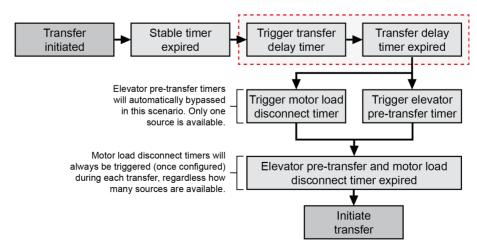
Scenario 1 Transfer delay timer is configured to a value > 0 seconds

Elevator pre-transfer signal is "Disabled"


Motor load disconnect signal is "Disabled"

Scenario 2 Transfer delay timer is configured to a value > 0 seconds

Elevator pre-transfer signal is "Enabled"


Motor load disconnect signal is "Disabled"

Scenario 3 Transfer delay timer is configured to a value > 0 seconds

Elevator pre-transfer signal is "Enabled"

Motor load disconnect signal is "Enabled"

Page 32/158 © Woodward

Transfer commit

YES / NO

This function is only effective if a transfer from the preferred source to the non-preferred source is requested.

YES...... A transfer to the non-preferred source is committed as soon as the non-preferred source stable timer has started to count. The transfer will be performed after the stable timer has expired, even if the preferred source restores. A transfer is committed even if priority source returns while the non-preferred source start timer is counting.

NO...... A transfer to the non-preferred source is only committed, if the non-preferred source stable timer has **expired completely**.

If the preferred source restores while the non-preferred source stable timer is still counting, the whole process will be aborted and the transfer switch remains on the preferred source. Even after stable timer expires, if transfer timer starts, and S1 is restored, S2 goes into cool down.

Transfer delay timer S1->S2

0 to 6500 s

Usually a transfer to S2 is performed as soon as the "S2 source stable time" (parameter 3332) has expired. The "Transfer delay timer S1→S2" can be used to add an additional delay to the transfer, after the "S2 source stable time" has expired.

If the "Transfer delay timer $S1 \rightarrow S2$ " is configured to "0 Seconds", it will automatically be de-activated and no longer be taken into account during transfers.

If the "Transfer delay timer $S1 \rightarrow S2$ " is configured to a value > 0 Seconds, it will always be triggered after the S2 stable delay timer has expired. A bypass of the timer is possible via the "Bypass "Softkey on the display screen or via LogicsManager "Ext. bypass" (parameter 12820). Once this timer is configured to a value >0 it will always be active during each transfer. It will never be automatically bypassed.

Trigger conditions for "Transfer delay timer $S1 \rightarrow S2$ ":

- 1. A transfer to S2 has been initiated
- 2. The S2 stable timer has expired
- 3. "Transfer delay timer S1→S2" is configured to a value larger than "0 Seconds".

© Woodward Page 33/158

Transfer delay timer S2->S1

0 to 6500 s

Usually a transfer to S1 is performed as soon as the "S1 source stable time" (parameter 3333) has expired. The "Transfer delay timer S2→S1" can be used to add an additional delay to the transfer, even if the "S1 source stable time" has already expired.

If the "Transfer delay timer S2→S1" is configured to "0 Seconds", it will automatically be de-activated and no longer be taken in account during transfers.

If the "Transfer delay timer S2→S1" is configured to a value > 0 Seconds, it will always be triggered after the S1 stable delay timer has expired. A bypass of the timer is possible via the "Bypass "Softkey on the display screen or via LogicsManager "Ext. bypass" (parameter 12820). Once this timer is configured to a value >0 it will always be active during each transfer. It will never be automatically bypassed.

Trigger conditions for "Transfer delay timer S2→S1":

- 1. A transfer to S1 has been initiated
- 2. The S1 stable timer has expired
- 3. "Transfer delay timer S2→S1" is configured to a value larger than "0 Seconds".

Source 1 start delay time

0 to 300 s

This parameter delays the energizing/de-energizing of the start relay (engine start) if source 2 is considered as "not OK" or a start, "Load Test", "No Load Test", remote peak shave or interruptible power rates request is performed.

The counter starts as soon as source 2 is considered as "not OK" or the start request is initiated.

If source 2 returns before this counter has expired, the timer will be terminated and the controller returns to standby mode (since it is not intended that the engine starts with every short temporary line fault).

If the timer has expired and source 2 has not been considered as "OK", the engine start relay will be energize/de-energize, the engine will be started, and flag 20.05 "S1 Start Signal" will be enabled.

If this timer is running, the "S1 start delay" message and the Bypass softkey are displayed.

Source 2 start delay time

0 to 300 s

This parameter delays the energizing/de-energizing of the start relay (engine start) if source 1 is considered as "not OK" or a start, "Load Test", " No Load Test", remote peak shave or interruptible power rates request is performed.

The counter starts as soon as source 1 is considered as "not OK" or the start request is initiated.

If source 1 returns before this counter has expired, the timer will be terminated and the controller returns to standby mode (since it is not intended that the engine starts with every short temporary line fault).

If the timer has expired and source 1 has not been considered as "OK", the engine start relay will energize/de-energize, the engine will be started, and flag 20.06 "S2 Start Signal" will be enabled.

If this timer is running, the "S2 start delay" message and the Bypass softkey are displayed.

Page 34/158 © Woodward

Source 1 source stable time

1 to 6500 s

This parameter configures the delay before source 1 is considered as OK. This timer starts after the last monitored value has returned within the restore limits following a source 1 outage. Source 1 will be considered as OK again after this timer has expired. If the voltage and/or frequency exceeds the restore limits again before the timer expires, the timer will be reset (refer to Figure 3-2).

The source 1 stable timer is automatically bypassed if source 1 is the preferred source and the outage delay of source 2 (non-preferred) has expired.

If source 1 fails unexpectedly before this timer has expired, it will be terminated and the load will still be supplied by source 2.

This timer is intended to delay the transfer to ensure that source 1 voltage and frequency are definitely stable before the ATS switch is operated to perform a transfer to source 1.

If this timer is running, the "S1 stable timer" message and the Bypass softkey are displayed.

The S1 source stable timer is automatically bypassed, when the transfer switch is in neutral position and only S1 is available (only valid if the parameter "Transfer switch type" (parameter 3424) is configured to "Delayed" or "Closed". This ensures the fastest possible transfer to S1 if the DTSC-200 is powered up while the system is in neutral position.

NOTE

In case a "load test" is being performed (i.e. the load is supplied by source 2, but source 1 is present as well and OK) and source 2 fails, the "S1 source stable timer" will be bypassed completely to be able to change back (OK) to source 1 immediately. This is intended to ensure that the load is not de-energized if a genset failure takes place during a load test.

Source 2 source stable time

1 to 6500 s

This parameter configures the delay before source 2 is considered as OK. This timer starts after the last monitored value has returned within the restore limits following a source 2 outage. Source 2 will be considered as OK again after this timer has expired. If the voltage and/or frequency exceeds the restore limits again before the timer expires, the timer will be reset (refer to Figure 3-2).

The source 2 stable timer is automatically bypassed if source 2 is the preferred source and the outage delay of source 1 (non-preferred) has expired. If source 2 fails unexpectedly before this timer has expired, it will be terminated

If source 2 fails unexpectedly before this timer has expired, it will be terminated and the load will still be supplied by source 1.

This timer is intended to delay the transfer to ensure that source 2 voltage and frequency are definitely stable before the ATS switch is operated to perform a transfer to source 2.

If this timer is running, the "S2 stable timer" message and the Bypass softkey are displayed.

The S2 source stable timer is automatically bypassed, when the transfer switch is in neutral position and only S2 is available (only valid if the parameter "Transfer switch type" (parameter 3424) is configured to "Delayed" or "Closed". This ensures the fastest possible transfer to S2 if the DTSC-200 is powered up while the system is in neutral position.

© Woodward Page 35/158

Source 1 outage delay

0.1 to 10.0 s

This timer defines the maximum time before source 1 (voltage, frequency and phase rotation) is considered as "not OK" to initiate a transfer to source 2. This timer starts if any of the monitored source 1 values exceeds the fail limits. Source 1 will be considered as "not OK", after this timer has expired. If the voltage and/or frequency returns within the fail limits before the timer expires, the timer will be reset (refer to Figure 3-2).

This timer is intended to prevent an immediate transfer to source 2 in case of a temporary voltage or frequency drop during a load test due to a short temporary failure of source 1 (i.e. ignition miss of a genset, etc.).

If this timer has expired, the alarm "Unint. stop S1" is issued.

Note: If source 2 is the "preferred source" and the "S1 outage delay" timer has expired (i.e. source 1 is considered as "not OK"), the "S2 source stable timer" will be bypassed.

Source 2 outage delay

0.1 to 10.0 s

This timer defines the maximum time before source 2 (voltage, frequency and phase rotation) is considered as "not OK" to initiate a transfer to source 1. This timer starts if any of the monitored source 2 values exceeds the fail limits. Source 2 will be considered as "not OK", after this timer has expired. If the voltage and/or frequency returns within the fail limits before the timer expires, the timer will be reset (refer to Figure 3-2).

This timer is intended to prevent an immediate transfer to source 1 in case of a temporary voltage or frequency drop during a load test due to a short temporary failure of source 2 (i.e. ignition miss of a genset, etc.).

If this timer has expired, the alarm "Unint. stop S2" is issued.

Note: If source 1 is the "preferred source" and the "S2 outage delay" timer has expired (i.e. source 2 is considered as "not OK"), the "S1 source stable timer" will be bypassed.

Page 36/158 © Woodward

Figure 3-2: Source stable and outage timers

NOTE

Figure 3-2 describes the principle of stable and outage timers for an example where a threshold needs to be exceeded to consider the source as "OK" (like underfrequency or undervoltage).

In cases which a value needs to drop below the threshold for that source to be considered as OK (overfrequency, voltage imbalance or overvoltage), the restore value is lower than the fail value.

呂		S1 cooldo	wn time
B		S1 Nac	hlaufzeit
CL2	{0}	{1}	{2}
3343			✓

Engine 1 cooldown time

1 to 6500 s

This parameter configures the duration of the cool down phase of engine 1 after the load has been disconnected.

If this timer is running, the "S1 cooldown" message and the Bypass softkey are displayed.

Engine 2 cooldown time

1 to 6500 s

This parameter configures the duration of the cool down phase of engine 2 after the load has been disconnected.

If this timer is running, the "S2 cooldown" message and the Bypass softkey are displayed.

© Woodward Page 37/158

Application: Transfer Logics (LogicsManager)

NOTE

All functions which are described in the following text may be assigned by the *LogicsManager* to any relay which is available via the *LogicsManager* and not assigned to another function. The assignment of the defined relays to defined functions occurs by selection of the application mode. The same way some relays are designated to specific functions, others may be assigned to different functions. These are listed as "programmed" relays. If a relay is "programmable" the function may be assigned to other relays by configuring the *LogicsManager*.

Inhibit ATS

If this logical output becomes TRUE, the ATS controller is blocked against automatic transfers and the "ATS Inhibit" message is displayed. Usually, a selected relay output is configured to this *LogicsManager* function, which may be used to block the ATS controller when a disconnect switch is connected to this "Inhibit ATS" relay output.

All automatic transfers will be blocked. Only the "Engine start" signal will still be issued.

Inhibit ATS LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

NOTE

The disconnect switch must be located in the ATS cabinet. During a manual transfer, the disconnect switch is operated to the "Inhibit ATS" position, which will block the controller from performing an automatic transfer.

WARNING

If the "Inhibit ATS" function is not active during a manual transfer, serious injury may occur! Always inhibit automatic ATS transfers before performing a manual transfer!

Page 38/158 © Woodward

Inhibit Transfer to Source 1

If this logical output becomes TRUE, the transfer back to source 1 will be blocked temporarily and the "Inhib. XFR to S1" message is displayed.

Application example:

A hospital has a source 1 (preferred source) power failure. Source 2 would then be started, and a transfer to S2 will occur, with the load being supplied by that source. When source 1 returns, a transfer back to S1 may be prevented by making Inhibit Transfer to Source 1 *LogicsManager* function TRUE (i.e. energizing a DI). In this case, a transfer back to source 1 may have some risk involved if a difficult surgery is in progress. A potential mechanical failure resulting from transfer can be avoided by using this function.

Z		Inhib. X	FR to S1
B		Trans S1	sperren
CL2 12610	{0}	{1} ✓	{2}

Inhibit transfer to source 1

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Inhibit Transfer to Source 2

If this logical output becomes TRUE, the transfer to source 2 will be blocked temporarily and the "Inhib. XFR to S2" message is displayed.

This function has the same behavior as the "Inhibit XFR to source 1" function, except that a transfer to source 2 will be prevented.

Inhibit transfer to source 2

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Remote Peak Shave

If this logical output becomes TRUE, the non-preferred source will be started, a transfer to the non-preferred source will be performed, and the "Rem.peak shave" message is displayed as soon as the transfer is completed. The load will then be supplied by the non-preferred source. If the logical output becomes FALSE again, a regular transfer sequence back to the preferred source will be performed including the expiry of all timers belonging to this sequence.

If the non-preferred source fails during a remote peak shave request and the preferred source is available, an immediate transfer back to the preferred source will be performed.

Remote peak shave

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

© Woodward Page 39/158

Interruptible Power Rate Provisions

If this logical output becomes TRUE, the non-preferred source will be started, a transfer to the non-preferred source will be performed, and the "Pwr.rate.prov." message is displayed as soon as the transfer is completed. The load will then be supplied by the non-preferred source. If the logical output becomes FALSE again, a regular transfer sequence back to the preferred source will be performed including the expiry of all timers belonging to this sequence.

If the non-preferred source fails during an interruptible power rate provisions request and the preferred source is available, an immediate transfer back to the preferred source will be performed.

This function may be used in some countries where the provider offers contracts, which contain provisions for the customer to disconnect from the utility during peak load times and change to a different power supply (e.g. genset), like the United States. In case the alternative (genset) supply fails during a "Interruptible power rate provisions" request, a transfer to the preferred source will be performed with the effect that the customer must pay a reimbursement to the provider.

Int. pow. rates Interruptible power rate provisions

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

External Timer Bypass

If this logical output becomes TRUE (by energizing a DI for example), all timers, which are in progress at the moment and can be bypassed, are bypassed. This has the same effect as pressing the "Bypass" softkey.

External timer bypass

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

NOTE

If another timer becomes active immediately after the previous timer has been bypassed, the discrete input must be de-energized before it may be energized again to bypass the next timer. We recommend using a momentary push-to-make button for this function.

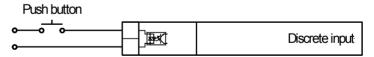


Figure 3-3: External timer bypass - push button

Page 40/158 © Woodward

Gen-Gen Enable

This function is only enabled if the application mode (parameter 4148) is configured to "Gen-Gen". If this logical output becomes TRUE (by energizing a DI for example), the gen-gen mode will be enabled.

The behavior of the function depends on the source priority:

- Only the *LogicsManager* function "Source priority S1" (parameter 12680) is TRUE: The source 1 genset will be started. If source 1 doesn't start or fails, source 2 genset will be started automatically.
- Only the *LogicsManager* function "Source priority S2" (parameter 12810) is TRUE: The source 2 genset will be started. If source 2 doesn't start or fails, source 1 genset will be started automatically.
- Both source priority *LogicsManager* functions (parameters 12680 and 12810) are TRUE or both are FALSE: Source 1 has priority, i.e. the source 1 genset will be started. If source 1 doesn't start, source 2 genset will be started automatically.

If the gen-gen mode will be disabled again, all start requests are terminated and the genset, which is currently in operation, will be shut down with a cool down.

Generator-Generator mode enable

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

© Woodward Page 41/158

Application: Elevator Pre-Signal

The elevator pre-signal flag (20.01) may be assigned to any output relay using the *LogicsManager*.

The elevator pre-signal is important for buildings which are equipped with elevators. This signal will be enabled before any transfer in order to signal a transfer to an elevator control. If this signal is received by an elevator control, the elevator stops at the next floor and opens the doors. This signal is enabled until the transfer is completed. Then, the signal will be disabled and the elevator is able to operate regularly again.

This function may be used if there is a load test performed during regular hospital operation. A load test means that two sources are available. This signal will not be set in case of a utility failure. In this case, the elevator might get stuck between two floors and it makes no sense to enable the elevator pre-signal. Possibly stuck elevators are accepted and the main target is to attempt to supply the load. As soon as the supply returns, the elevators are ready to operate again.

NOTE

The elevator pre signal (EPS) may be enabled in parallel with a motor load disconnect signal (MLD) if a MLD signal is configured. EPS and MLD are two functions, which operate completely independent and don't affect each other.

If the EPS timer will be bypassed, the MLD signal will be processed consequently (if configured). Otherwise, the transfer sequence will be continued. If the transfer has been performed, the EPS signal will be reset. This is also valid, if the EPS signal has been bypassed prior to the transfer and a MLD timer was configured additionally.

This timer is automatically bypassed, if not both sources are available (and stable) for transfer. If, for example, a load test has been requested and cancelled again while the EPS signal is active, the EPS relay will be reset automatically and the complete process will be terminated.

呂		Elevator P	re Signal
8		Aufzugswa	arnsignal
CL2 4490	{0} ✓	{1} ✓	{2} ✓

Elevator pre-signal	ON / OFF
Elevator pre-signar	ON / OFF

OFFNo elevator pre-signal is issued, no elevator pre-signal timer starts and the *LogicsManager* flag 20.01 is not enabled.

ON.....The elevator pre-signal will be issued before any transfer and the *LogicsManager* flag 20.01 will be enabled. The remaining elevator pre-signal time is displayed.

Elevator pre-signal duration

1 to 6500 s

The time configured here determines how long the elevator pre-signal is enabled before the transfer process will be continued. The signal will be disabled again if the transfer process has been completed.

If this timer is running, the "Pre signal timer" message is displayed.

Page 42/158 © Woodward

The following examples show the behavior of the elevator pre-signal for different applications.

Example 1 (elevator pre-signal disabled):

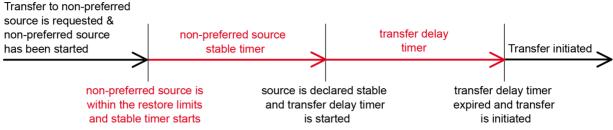


Figure 3-4: Elevator pre-signal - example 1

Example 2 (elevator pre-signal enabled):

Figure 3-5: Elevator pre-signal - example 2

Example 3 (elevator pre-signal and motor load disconnect enabled):

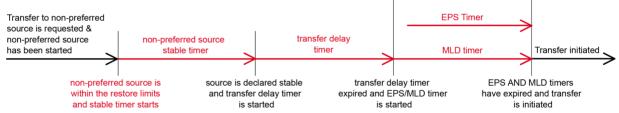
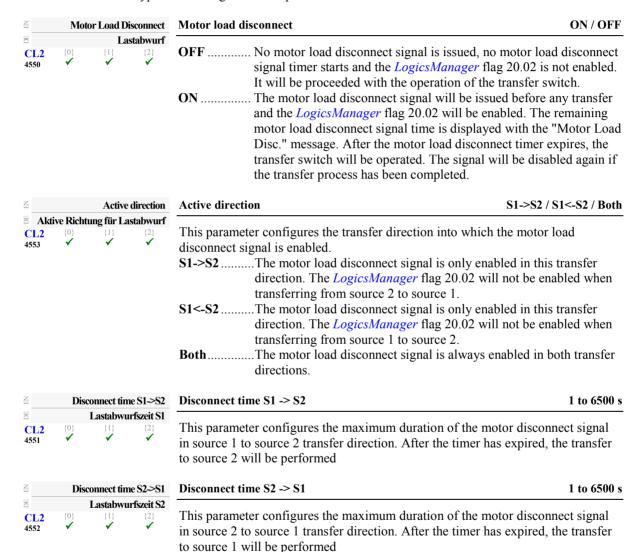


Figure 3-6: Elevator pre-signal - example 3

NOTE

If the transfer delay timers are configured to "0" seconds, they will automatically be bypassed and no longer taken in account during a transfer.

© Woodward Page 43/158


Application: Motor Load Disconnect

The motor load disconnect flag (20.02) may be assigned to any output relay using the *LogicsManager*.

The motor load disconnect function is intended for sequential load shedding before a transfer and sequential load addition after a transfer. This shall prevent the addition of the complete load at once.

The loads will be disconnected one after the other before a transfer. Then, the loads will be connected again in the same order following the transfer.

In contrast to the elevator pre-signal, this signal will also be enabled in case of a preferred source failure. No automatic or manual bypass of this signal will be performed.

Page 44/158 © Woodward

Application: Source Priority Selection

The two *LogicsManager* functions "Source Priority S1" and "Source Priority S2" are used to determine which source is to be considered as preferred. The *LogicsManager* enables to use a discrete input (for example) to select the preferred source externally using a source priority selector switch, which is usually on the operation panel.

In general, the preferred source is the one, which is permanently available. The NON-preferred source serves as second source, which will be enabled if the preferred source fails or if a remote start signal is present.

Application examples:

One utility supply, one generator (Util-Gen application)
If the utility (source 1) is defined as preferred source, the genset (source 2) will be started if the utility fails.
If the genset is defined as preferred source, the engine start signal is permanently enabled until the source priority changes to the other source.

NOTE

Changing the priority while a load test (parameter 12640), remote peak shave (parameter 12630) or interruptible power rates (parameter 12660) operation is enabled, results in a transfer to the selected non-preferred source.

- Two utility supply networks (Util-Util application)
 In this case, the customer might select one utility supply as preferred source. In case of a failure of the preferred source, the load will be transferred to the other source.
- <u>Two generators (Gen-Gen application)</u>
 In this case, the customer might select one generator as preferred source. In case of a failure of the preferred source, the other genset will be started and the load will be transferred to the other source.

If the *LogicsManager* function "Source Priority S1" becomes TRUE, source 1 will be considered as preferred.

Source Priority S1

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

If the *LogicsManager* function "Source Priority S2" becomes TRUE, source 2 will be considered as preferred.

Source Priority S2

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

NOTE

If no source is preferred (both *LogicsManager* functions are FALSE or both *LogicsManager* functions are TRUE), source 1 will be the preferred source.

© Woodward Page 45/158

Application example 1 (source priority = S1):

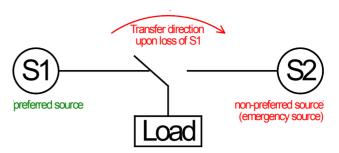


Figure 3-7: Source priority selection - S1 preferred

Application example 2 (source priority = S2):

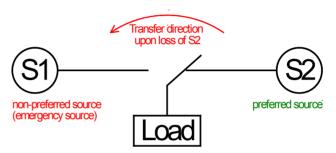


Figure 3-8: Source priority selection - S2 preferred

If the preferred source is available, the load will automatically be connected to the preferred source (except when a transfer to the non-preferred source is forced by a load test or remote peak shave, etc.).

It is also possible to change the source priority while the load is connected to the preferred or non-preferred source.

If the load is connected to the non-preferred source and this non-preferred source is chosen as the preferred source, the load remains connected to this source.

If the load is connected to the preferred source and this preferred source is chosen as the non-preferred source, the load will be transferred to the "new" preferred source.

Page 46/158 © Woodward

Extended Parallel Time

NOTE

This function is only effective if the transfer switch type (parameter 3424) is configured to "Closed" and in-phase monitoring (parameter 4570) is enabled.

If a closed transition is performed, the overlap time of the make-before-break process, in which both sources are parallel, is as configured in parameter 4577 (Max. overlap time). If this time is to be extended, a *LogicsManager* function is available to keep the transition switch in overlap position. This may be achieved by a digital signal of an external synchronization device for example.

If transfer switch type (parameter 3424) is configured as "Standard", external sync. permission (ext. permit for closed transition (parameter 4584) and closed transfer enable (parameter 4584)) does not apply.

If the *LogicsManager* function "Ext. para. time" becomes TRUE, the transfer switch will remain in overlap position. If it becomes FALSE again, the source, from which the transfer has been initiated, will be disconnected and the load will be supplied by the new source.

Extended parallel time

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

NOTE

As long as this function is TRUE, parameter 4577 (Max. overlap time) is not effective.

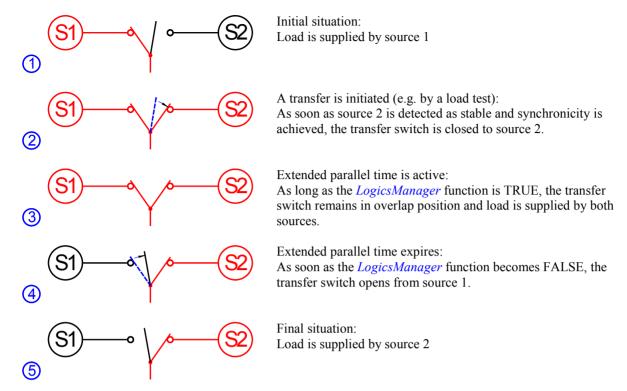
NOTE

If one source fails as long as this function is TRUE, the failed source will automatically be disconnected.

WARNING

Both sources remain in overlap position as long as this function is TRUE.

Both sources are not decoupled if


- a load test (parameter 12640 on page 61) is disabled
- a remote peak shave request (parameter 12630 on page 39) is disabled
- an interruptible power rate request (parameter 12660 on page 40) is disabled
- · the priority is changed

An overlap situation is only decoupled if

- the "Extended parallel time" function becomes FALSE again
- the phase angle during overlap position is > 2.0° or < -2.0°

© Woodward Page 47/158

The following example shows a typical transfer sequence from source 1 to source 2 with extended parallel time:

Page 48/158 © Woodward

Load Shed

NOTE

Load shed is inactive as long as an "Extended parallel time" (parameter 12860) is enabled.

The load shed function bypasses the in-phase monitoring function. This can cause an asynchronous transfer in case a standard transition switch is used.

The load shed function is intended to shed the load from the non-preferred source if a load shed signal is received from a master controller (e.g. SCADA system) via a discrete input.

If a load shed signal is received from a master control, the DTSC disconnects the load from the non-preferred source immediately. The following rules are valid for the load shed function:

- The load must be supplied by the non-preferred source. The load shed function can only trigger to disconnect the load from the non-preferred source. If the load is supplied by the preferred source while a load shed signal is triggered, the load will not be disconnected.
- Possible timers for pre-transfer signals like motor load disconnect or elevator pre-signal, which are enabled prior to the transfer, will be ignored in case of a load shed request.
- If in-phase monitoring is enabled, this will be ignored in case of a load shed request.
- If the *LogicsManager* function "Inhibit XFR to S1" or "Inhibit XFR to S2" is TRUE and would prevent a transfer to the preferred source, this function will be ignored on case of a standard transition switch. If a delayed or closed transition switch is used, the switch will open to neutral position.
- If transfer switches are used, which may only be operated in case a measuring voltage is present, a transfer to the preferred source may only be possible, when it is present. If only the non-preferred source is present, the *LogicsManager* flag "Load shed" (20.11) will be enabled. This flag enables to close a load shed relay, which connects the voltage of the non-preferred source to the preferred source side of the transfer switch to operate it. If the neutral position (delayed / closed switch) or the preferred source position (standard switch) is detected by the DTSC, the load shed signal will be reset again. Refer to Figure 3-9 and Figure 3-10 for more detailed information.

If the *LogicsManager* function "Load shed" becomes TRUE, a load shed from the non-preferred source will be performed.

Load shedding enabled

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Table 3-1 defines the behavior in case of a load shed request when utilizing a standard transition switch depending on the system conditions.

Load is connected to	Pre-transfer signals	In-phase monitoring	Preferred source available	Behavior on load shed request
Non-preferred source	Bypassed	Bypassed	Yes	Immediate transfer to preferred source
Non-preferred source	Bypassed	Bypassed	No	<i>LogicsManager</i> flag "Load shed" (20.11) is set to transfer to the preferred source
Preferred source	N/A	N/A	Yes	No action performed - load remains connected to preferred source

Table 3-1: Application - load shed with standard transition switch

© Woodward Page 49/158

Table 3-2 defines the behavior in case of a load shed request when utilizing a delayed or closed transition switch depending on the system conditions.

Load is connected to	Pre-transfer signals	In-phase monitoring	Preferred source available	Behavior on load shed request
Non-preferred source	Bypassed	Bypassed	Yes	Immediate transfer to preferred source
Non-preferred source	Bypassed	Bypassed	No	LogicsManager flag "Load shed" (20.11) is immediately set to open to neutral position If the preferred source restores while the switch is in neutral position, a transfer to the preferred source is initiated without waiting for the preferred source stable timer to expire
Preferred source	N/A	N/A	Yes	No action performed - load remains connected to preferred source

Table 3-2: Application - load shed with delayed or closed transition switch

Figure 3-9 shows how to wire a load shed relay for applications, which use a standard transition switch (S1 is the preferred source and S2 is the non-preferred source with this application).

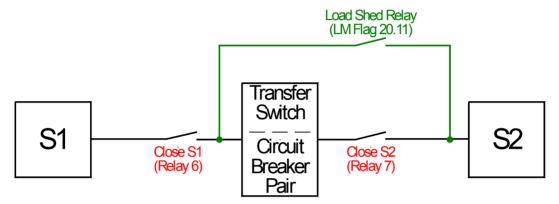


Figure 3-9: Load shed relay wiring - standard transition switch

Figure 3-10 shows how to wire a load shed relay for applications, which use a delayed or closed transition switch (S1 is the preferred source and S2 is the non-preferred source with this application).

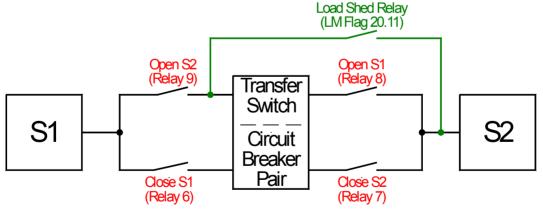


Figure 3-10: Load shed relay wiring - delayed or closed transition switch

NOTE

The load shed relay must always be operated at the non-preferred source side with the power of the non-preferred source.

If a load shed relay is used, preferred and non-preferred source priority must not be changed since this would lead to a malfunction of the load shed function.

Page 50/158 © Woodward

Service Disconnect

NOTE

Service disconnect is only active, if the "Transfer switch type" (parameter 3424) is configured to "Delayed" or "Closed". The transfer switch type "Standard" does not support this feature.

This feature allows disconnecting the load from the source in case of a service operation.

If the *LogicsManager* function "Service Disconnect" becomes TRUE, the transfer switch opens to neutral position and remains there until this function becomes FALSE again.

No automatic transfers to any source will be performed if the transfer switch has reached neutral position and this *LogicsManager* function is enabled.

If the transfer switch is in neutral position and this *LogicsManager* function becomes FALSE again, the unit changes to the "preferred source" (if available) automatically. If the "preferred source" is not available, it changes to the "non-preferred source" automatically.

Service disconnect enabled

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

© Woodward Page 51/158

Breaker

Breaker: Transfer Switch Type

Transfer switch type

Standard / Delayed / Closed

This parameter configures the type of ATS switch, which is connected to the controller. The switch logic behavior depends on the setting configured here.

StandardAn "open transition" switch is selected.

DelayedA "delayed transition" switch is selected.

Closed........A "closed transition" switch is selected.

Standard Transfer Switch

If an open transition switch is used, "Standard" transfer switch type must be selected. This switch type may only take on two states:

NOTE

Do not use "Standard" switch mode with breaker type transfer switches. Open commands are not used! "Standard" mode is used with mechanically interlocked transfer type mechanisms only!

Position 1: Connected to source 1

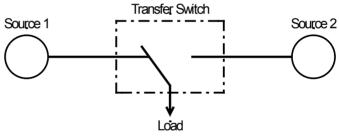


Figure 3-11: Open transition switch - connected to source 1

• Position 2: Connected to source 2

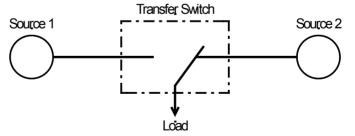


Figure 3-12: Open transition switch - connected to source 2

The following switch commands are enabled in this mode:

- LogicsManager flag (20.07): Command: Close to Source 1
- LogicsManager flag (20.09): Command: Close to Source 2

These signals may be configured to relay outputs to operate the ATS switch mechanics.

The following feedback signals are evaluated in this mode:

- Discrete input 1 (ATS breaker in Source 1 position) = signal designation: S1
- Discrete input 2 (ATS breaker in Source 2 position) = signal designation: S2

These feedback signals are evaluated by the ATS controller for monitoring the actual switch position.

Page 52/158 © Woodward

The following additional features are recommended for this mode:

- In-phase monitor (refer to the In-Phase Monitor section)
- Motor load disconnect

© Woodward Page 53/158

Delayed Transfer Switch

If a delayed transition switch is used, "Delayed" transfer switch type must be selected. This switch type may take on three states:

• Position 1: Connected to source 1

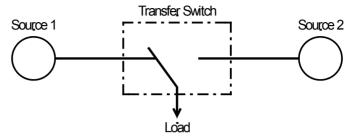


Figure 3-13: Delayed transition switch - connected to source 1

• Position 2: Neutral

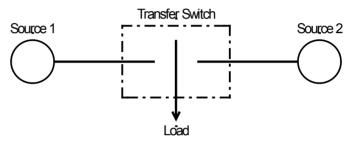


Figure 3-14: Delayed transition switch - neutral position

• Position 3: Connected to source 2

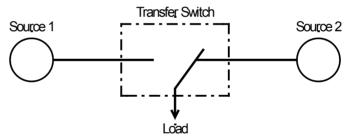


Figure 3-15: Delayed transition switch - connected to source 2

The following switch commands are enabled in this mode:

- LogicsManager flag (20.07): Command: Close to Source 1
- LogicsManager flag (20.08): Command: Open Source 1
- LogicsManager flag (20.09): Command: Close to Source 2
- LogicsManager flag (20.10): Command: Open Source 2

These signals may be configured to relay outputs to operate the ATS switch mechanics.

The following feedback signals are evaluated in this mode:

- Discrete input 1 (ATS breaker in Source 1 position) = signal designation: S1
- Discrete input 2 (ATS breaker in Source 2 position) = signal designation: S2
- Discrete input 3 (ATS breaker in Source 1 OPEN position) = signal designation: S10
- Discrete input 4 (ATS breaker in Source 2 OPEN position) = signal designation: S2O

These feedback signals are evaluated by the ATS controller for monitoring the actual switch position.

The following additional features are recommended for this mode:

- In-phase monitor (refer to the In-Phase Monitor section)
- · Motor load disconnect

Page 54/158 © Woodward

Closed Transfer Switch

If a closed transition switch is used, "Closed" transfer switch type must be selected. This switch type may take on four states:

• Position 1: Connected to source 1

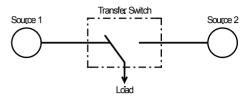


Figure 3-16: Closed transition switch - connected to source 1

• Position 2: Neutral

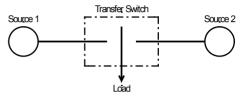


Figure 3-17: Closed transition switch - neutral position

• Position 3: Synchronized

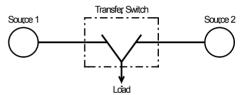


Figure 3-18: Closed transition switch - connected to source 1 and 2 (overlap position)

• Position 4: Connected to source 2

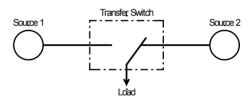


Figure 3-19: Closed transition switch - connected to source 2

The following switch commands are enabled in this mode:

- LogicsManager flag (20.07): Command: Close to Source 1
- LogicsManager flag (20.08): Command: Open Source 1
- LogicsManager flag (20.09): Command: Close to Source 2
- LogicsManager flag (20.10): Command: Open Source 2

These signals may be configured to relay outputs to operate the ATS switch mechanics.

The following feedback signals are evaluated in this mode:

- Discrete input 1 (ATS breaker in Source 1 position) = signal designation: S1
- Discrete input 2 (ATS breaker in Source 2 position) = signal designation: S2
- Discrete input 3 (ATS breaker in Source 1 OPEN position) = signal designation: S1O
- Discrete input 4 (ATS breaker in Source 2 OPEN position) = signal designation: S2O

These feedback signals are evaluated by the ATS controller for monitoring the actual switch position.

The following additional features are recommended for this mode:

- In-phase monitor must be used (refer to the In-Phase Monitor section)
- Motor load disconnect

© Woodward Page 55/158

Use Limit Switch Open Replies

This function is used to define the limit switch reply signals, which are evaluated for determining the current ATS switch position.

The following four signals are available for determining the ATS switch position:

- Discrete input 1 (ATS breaker in Source 1 position) = signal designation: S1
- Discrete input 2 (ATS breaker in Source 2 position) = signal designation: S2
- Discrete input 3 (ATS breaker in Source 1 OPEN position) = signal designation: S1O
- Discrete input 4 (ATS breaker in Source 2 OPEN position) = signal designation: S2O

NOTE

All reply signals, which are selected for determining the current ATS switch position must be connected to the discrete inputs of the DTSC to ensure a correct evaluation of the switch replies.

These discrete inputs have an N.C. logic, i.e. the breaker is considered as "in position" if the respective DI is de-energized.

Use limit switch open replies

YES / NO

This parameter may only be enabled (setting "YES") if parameter 3424 on page 52 is configured to "Delayed" or "Closed". If it is configured to "Standard", this parameter is always disabled (setting "NO").

This parameter defines whether the limit switch open signals are also used to determine the ATS switch position.

YESThe signals S1, S2, S1O, and S2O are used to determine the ATS switch position.

This setting provides a higher system safety because the "Switch Open" replies are also evaluated besides the "Switch Closed" replies.

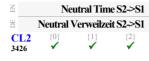
NO.....Only the signals S1 and S2 are used to determine the ATS switch position.

This setting does <u>not</u> use the DIs 3 and 4 for determining the ATS switch position and makes them available for other functions.

Delayed Mode Active

This function is only effective if parameter 3424 (Transfer switch type) is configured to "Closed". If the *LogicsManager* function "Delayed mode act." becomes TRUE, the transfer switch type will be set to "Delayed" until function becomes false.

Enable delayed mode


LogicsManager

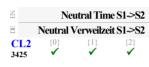
The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Page 56/158 © Woodward

Transition Timers

The "Neutral Time S2 -> S1" parameter is only enabled, if "Delayed" or "Closed" is configured as "Transfer switch type" (parameter 3424).

Neutral Time S2 -> S1


1 to 6500 s

This parameter configures the residence time in neutral position when transferring the load in this transfer direction.

After this timer has expired, the transfer to source 1 will be performed.

If this timer is running, the "Neutral S1 -> S2" message is displayed.

The "Neutral Time S2 <- S1" parameter is only enabled, if "Delayed" or "Closed" is configured as "Transfer switch type" (parameter 3424).

Neutral Time S1 -> S2

1 to 6500 s

This parameter configures the residence time in neutral position when transferring the load in this transfer direction.

After this timer has expired, the transfer to source 2 will be performed.

If this timer is running, the "Neutral S1 <- S2" message is displayed.

Limit switch reply timeout

0.1 to 99.9 s

This parameter configures the maximum waiting time for a feedback signal from the ATS switch. If no reply is detected within the configured time, a new transition attempt will be performed after the "Wait time until next XFR attempt" (parameter 3429) has expired (refer to Figure 3-20 on page 58). If the "Max. of transfer attempts" (parameter 3427) is exceeded, a switch failure will be issued.

If this timer is running, the Bypass softkey is not displayed. The display message while the timer is running indicates that a reply is expected and depends on the command issued:

If source 1 is to be opened: "Wait S1 open"
If source 2 is to be opened: "Wait S2 open"

If source 1 is to be closed: "Wait S1 close"
If source 2 is to be closed: "Wait S2 close"

Note: The operator coils may be damaged if this timer is configured too long (i.e. the maximum time, for which the transition pulse may be enabled, must not be exceeded).

NOTE

The limit switch reply timeout monitoring is only enabled if a transfer command (C2, C1, C2O, or C1O) has been issued from the ATS controller.

© Woodward Page 57/158

Wait time until next transfer attempt

0.1 to 99.9 s

This parameter configures the interval between an unsuccessful transfer attempt and the next transfer attempt.

This time allows the relay coil to cool down between the open/close signals.

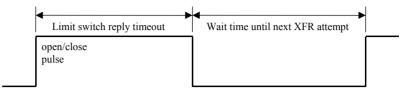


Figure 3-20: Breaker - transition pulse

Maximum number of unsuccessful transfer attempts

0 to 10

This parameter configures the maximum number of unsuccessful transfer attempts before a switch failure will be issued. The counter for the number of unsuccessful transition attempts will be increased with the start of each waiting time period (parameter 3429)

Note: If this parameter is configured to "0", the DTSC-200 will issue infinite transfer attempts, in case the corresponding switch reply signal is not being recognized. No "Open failure" or "Close failure" alarm will be issued.

Page 58/158 © Woodward

Triggering of the "Fail to close S1" failure

This failure is triggered if the following conditions are met:

- Source 1 is available
- The ATS controller has issued the C1 signal (*LogicsManager* flag (20.07)) to close to source 1

As soon as the C1 signal (command: close to source 1) is issued, the "Limit switch reply timeout" timer (parameter 3428) starts to count and the period for monitoring whether the S1 reply (closed to source 1) is fed back from the ATS switch to the controller starts. The C1 signal is enabled until the "Limit switch reply timeout" timer has expired. Thus, this defines maximum permissible pulse duration for the transfer command. If the "Limit switch reply timeout" timer has expired, the C1 signal will be disabled. If the "Wait time until next XFR attempt" timer (parameter 3429) has expired, the C1 signal will be enabled again and the "Limit switch reply timeout" timer is restarted. The fail to close S1 failure is issued after exceeding the configured maximum number of attempts. The message "Fail to close S1" will be displayed and entered into the event logger.

If the reply from the ATS controller is detected while the "Limit switch reply timeout" timer is still counting, the C1 signal will be disabled immediately since the transfer was successful. The message is not being displayed anymore and the reply monitoring is terminated.

NOTE

Closing the ATS switch will be attempted until the maximum number of unsuccessful transition attempts (parameter 3427) is reached. The failure will be issued after the last failed transfer attempt.

Triggering of the "Fail to close S2" failure

This failure is triggered if the following conditions are met:

- Source 2 is available
- The ATS controller has issued the C2 signal (*LogicsManager* flag (20.09)) to close to source 2

As soon as the C2 signal (command: close to source 2) is issued, the "Limit switch reply timeout" timer (parameter 3428) starts to count and the period for monitoring whether the S2 reply (closed to source 2) is fed back from the ATS switch to the controller starts. The C2 signal is enabled until the "Limit switch reply timeout" timer has expired. Thus, this defines maximum permissible pulse duration for the transfer command. If the "Limit switch reply timeout" timer has expired, the C2 signal will be disabled. If the "Wait time until next XFR attempt" timer (parameter 3429) has expired, the C2 signal will be enabled again and the "Limit switch reply timeout" timer is restarted. The fail to close S2 failure is issued after exceeding the configured maximum number of attempts. The message "Fail to close S2" will be displayed and entered into the event logger.

If the reply from the ATS controller is detected while the "Limit switch reply timeout" timer is still counting, the C2 signal will be disabled immediately since the transfer was successful. The message is not being displayed anymore and the reply monitoring is terminated.

NOTE

Closing the ATS switch will be attempted until the maximum number of unsuccessful transition attempts (parameter 3427) is reached. The failure will be issued after the last failed transfer attempt.

NOTE

If a closure failure occurs, the system always tries to close the second breaker to a good source.

© Woodward Page 59/158

Triggering of the "Fail to open S1" failure

This failure is triggered if the following conditions are met:

- Source 2 is available
- The ATS controller has issued the C1O signal (*LogicsManager* flag (20.08)) to open source 1

As soon as the C1O signal (command: open source 1) is issued, the "Limit switch reply timeout" timer (parameter 3428) starts to count and the period for monitoring whether the S1O reply (source 1 is open) is fed back from the ATS switch to the controller starts. The C1O signal is enabled until the "Limit switch reply timeout" timer has expired. Thus, this defines maximum permissible pulse duration for the transfer command. If the "Limit switch reply timeout" timer has expired, the C1O signal will be disabled. If the "Wait time until next XFR attempt" timer (parameter 3429) has expired, the C1O signal will be enabled again and the "Limit switch reply timeout" timer is re-started. If the timer expires again without detecting the S1O reply, the "Fail to open S1" failure is issued. The message "Fail to open S1" will be displayed and entered into the event logger.

If the reply from the ATS controller is detected while the "Limit switch reply timeout" timer is still counting, the C1O signal will be disabled immediately since the transfer was successful. "Fail to open S1" will not be displayed and reply monitoring is terminated.

NOTE

Opening the ATS switch will be attempted until the maximum number of unsuccessful transition attempts (parameter 3427) is reached. The failure will be issued after the last failed transfer attempt.

Triggering of the "Fail to open S2" failure

This failure is triggered if the following conditions are met:

- Source 1 is available
- The ATS controller has issued the C2O signal (*LogicsManager* flag (20.10)) to open source 2

As soon as the C2O signal (command: open source 2) is issued, the "Limit switch reply timeout" timer (parameter 3428) starts to count and the period for monitoring whether the S2O reply (source 2 is open) is fed back from the ATS switch to the controller starts. The C2O signal is enabled until the "Limit switch reply timeout" timer has expired. Thus, this defines maximum permissible pulse duration for the transfer command. If the "Limit switch reply timeout" timer has expired, the C2O signal will be disabled. If the "Wait time until next XFR attempt" timer (parameter 3429) has expired, the C2O signal will be enabled again and the "Limit switch reply timeout" timer is re-started. If the timer expires again without detecting the S2O reply, the "Fail to open S2" failure is issued. The message "Fail to open S2" will be displayed and entered into the event logger.

If the reply from the ATS controller is detected while the "Limit switch reply timeout" timer is still counting, the C2O signal will be disabled immediately since the transfer was successful. "Fail to open S2" will not be displayed and reply monitoring is terminated.

NOTE

Opening the ATS switch will be attempted until the maximum number of unsuccessful transition attempts (parameter 3427) is reached. The failure will be issued after the last failed transfer attempt.

Page 60/158 © Woodward

Test Modes

There are two different types of system tests:

Load Test

This is a test with load transfer. If a load test is requested, a failure of the preferred source will be simulated. The non-preferred source will be started and load will be transferred to the non-preferred source. This test serves to ensure that the complete system is ready for operation in case of a real failure of the preferred source.

No Load Test

This is an engine test. If a no load test is requested, only the non-preferred source will be started, but no load transfer will be performed.

This test serves to ensure that the non-preferred source is starting and running properly.

NOTE

A "No Load Test" may only be performed if the non-preferred source is a generator.

If the *LogicsManager* function "Load Test" becomes TRUE (by energizing a DI for example), a load test will be performed.

Load Test LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

If the *LogicsManager* function "No Load Test" becomes TRUE (by energizing a DI for example), a no load test will be performed.

No Load Test LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

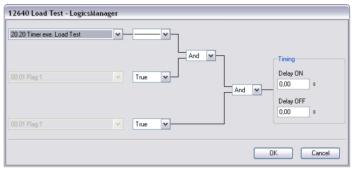
© Woodward Page 61/158

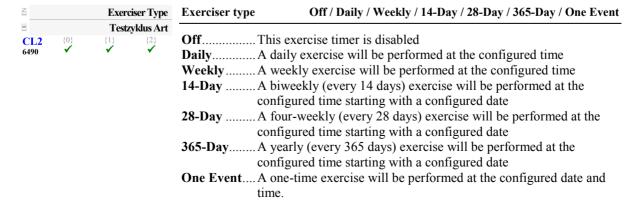
Timer Exerciser

This feature allows configuring up to 12 independent times, at which either a load test or a no-load test is performed. For this, 12 independent timers are available, to configure a recurring or single-time event, on which either a load test or a no-load test can be started.

If such a configured time is reached, a *LogicsManager* command variable (20.20 for load test, and 20.21 for noload test) will be enabled for the configured duration, which again can be used to enable the *LogicsManager* functions "Load Test" (parameter 12640) or "No Load Test" (parameter 12650).

A load test will only be performed if command variable 20.20 is enabled and the "Load Test" *LogicsManager* function is configured accordingly.




Figure 3-21: Test modes - load test configured for timer exerciser

A no-load test will only be performed if command variable 20.21 is enabled and the "No Load Test" *LogicsManager* function is configured accordingly.

Figure 3-22: Test modes - no-load test configured for timer exerciser

The timer exercisers 1 through 12 have identical parameters for configuring the exercise time. The parameters for timer exerciser 1 are described in the following:

Page 62/158 © Woodward

NOTE

Depending on the setting of the "Exerciser type" (parameter 6490), some of the following settings are not important (i.e. if a daily exercise is configured, the exerciser day of week is not important, for example).

呂	Exe	erciser stat	rt time hou		Exerciser start: hour							0	to 23 h		
CL2 6491	{0}	{1} ✓	Start Ze		The hour of the exercise start time is configured here.										
呂	Exerc	iser start t	time minut	te Exercis	ser star	t: minı	ıte							0 to	59 min
CL2 6492	{0}	{1}	Start Ze {2} ✓		our of t	he exe	rcise sta	art time	is con	figured	l here.				
Z	Exerc	riser start	day of wee	k Exercis	ser star	t: weel	kday								1 to 7
CL2 6493	{0}	Start	Wochenta		eekday	of a w	eekly e	exercise	is con	ıfigured	l here (1 = Mo	onday,	7 = Su	nday).
呂		Exercis	ser start da	y Exercis	ser star	t: day									0 to 31
CL2 6494	{0}	{1} ✓	Start Ta		The date of an exerciser start is configured here.										
Z]	Exerciser	start mont	th Exercis	ser star	t: mon	th								1 to 12
E CT 2	{0}	{1}	Start Mona		onth of	fan ev	arcicar	ctart ic	config	ured he	ro				_
CL2 6495	103	(1)	(2)	THC III	onui o	anca	CICISCI	start is	comig	urca ne	10.				
Z		Exercise	er start yea	r Exercis	ser star	t: year									0 to 99
CL2 6499	{0}	{1}	Start Jah {2}		ar of a	n exerc	eiser sta	art is co	nfigur	ed here	(08 co	rrespoi	nds wit	th 2008).
A	Exe	rciser dur	ration hour	rs Exercis	ser dur	ation: l	iours							0	to 12 h
CL2 6496	{0}	Testdauer {1}	in Stunde		ercise	durati	on in h	ours is	config	ured he	ere.				
Ä	Exerc	iser durat	ion minute	es Exercis	ser dur	ation: 1	ninutes							0 to	59 min
CL2 6497	{0}	Festdauer {1}	in Minute		The exerciser duration in minutes is configured here.										
Z		Exerci	ser test typ	Exerciser test type Load / No Load						lo Load					
CL2 6498	Test Typ CL2 (9) (1) (2) Load Command variable 20.20 will be enabled for a "Load Test" at the														
Parame	eter		l E	Ex. #1 IDs	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12

Parameter	Ex. #1 IDs	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Exerciser Type	6490	6503	6516	6529	6542	6555	6568	6581	6594	6607	6620	6633
Exerciser start time hour	6491	6504	6517	6530	6543	6556	6569	6582	6595	6608	6621	6634
Exerciser start time minute	6492	6505	6518	6531	6544	6557	6570	6583	6596	6609	6622	6635
Exerciser start day of week	6493	6506	6519	6532	6545	6558	6571	6584	6597	6610	6623	6636
Exerciser start day	6494	6507	6520	6533	6546	6559	6572	6585	6598	6611	6624	6637
Exerciser start month	6495	6508	6521	6534	6547	6560	6573	6586	6599	6612	6625	6638
Exerciser start year	6499	6512	6525	6538	6551	6564	6577	6590	6603	6616	6629	6642
Exerciser duration hours	6496	6509	6522	6535	6548	6561	6574	6587	6600	6613	6626	6639
Exerciser duration minutes	6497	6510	6523	6536	6549	6562	6575	6588	6601	6614	6627	6640
Exerciser test type	6498	6511	6524	6537	6550	6563	6576	6589	6602	6615	6628	6641

Figure 3-23: Test modes - parameter IDs of the timer exercisers

© Woodward Page 63/158

Example 1: Daily Exerciser

The following configuration example shows how to configure "Exerciser 1" for a daily "No Load Test" at 14:30 (2:30 pm), which shall last 1 hours and 40 minutes.

ID	Parameter	Setting
6490	Exerciser Type	Daily
6491	Exerciser start time hour	14 h
6492	Exerciser start time minute	30 min
6493	Exerciser start day of week	N/A *
6494	Exerciser start day	N/A *
6495	Exerciser start month	N/A *
6499	Exerciser start year	N/A *
6496	Exerciser duration hours	1 h
6497	Exerciser duration minutes	40 min
6498	Exerciser test type	No Load

Figure 3-24: Test modes - configuring exerciser 1 for a daily exercise

Example 2: Weekly Exerciser

The following configuration example shows how to configure "Exerciser 2" for a weekly "Load Test" every Wednesday at 12:00 (noon), which shall last 0 hours and 30 minutes.

ID	Parameter	Setting
6503	Exerciser Type	Weekly
6504	Exerciser start time hour	12 h
6505	Exerciser start time minute	00 min
6506	Exerciser start day of week	3 (Wednesday)
6507	Exerciser start day	N/A *
6508	Exerciser start month	N/A *
6512	Exerciser start year	N/A *
6509	Exerciser duration hours	0 h
6510	Exerciser duration minutes	30 min
6511	Exerciser test type	Load

Figure 3-25: Test modes - configuring exerciser 2 for a weekly exercise

Example 3: 14-Day Exerciser

The following configuration example shows how to configure "Exerciser 3" for a "Load Test" every 14 days at 18:45 (6:45 pm), which shall last 2 hours and 45 minutes, starting on October 12, 2008. The next test would take place on October 26, 2008, i.e. 14 days later.

ID	Parameter	Setting
6516	Exerciser Type	14-Day
6517	Exerciser start time hour	18 h
6518	Exerciser start time minute	45 min
6519	Exerciser start day of week	N/A *
6520	Exerciser start day	12
6521	Exerciser start month	10
6525	Exerciser start year	08
6522	Exerciser duration hours	2 h
6523	Exerciser duration minutes	45 min
6524	Exerciser test type	Load

Figure 3-26: Test modes - configuring exerciser 3 for a 14-day exercise

Page 64/158 © Woodward

^{*} N/A means that this setting is not important for the respective Exerciser Type

Example 4: One Event Exerciser

The following configuration example shows how to configure "Exerciser 4" for a "No Load Test" for only once at 08:00 (8:00 am) on November 11, 2008, which shall last 0 hours and 15 minutes. If the test has started once, it will not be repeated anymore. A new test must be configured by the operator.

ID	Parameter	Setting
6529	Exerciser Type	One Event
6530	Exerciser start time hour	08 h
6531	Exerciser start time minute	00 min
6532	Exerciser start day of week	N/A *
6533	Exerciser start day	11
6534	Exerciser start month	11
6538	Exerciser start year	08
6535	Exerciser duration hours	0 h
6536	Exerciser duration minutes	15 min
6537	Exerciser test type	No Load

Figure 3-27: Test modes - configuring exerciser 4 for a one event exercise

If an exercise event is pending at the current date, this is indicated by the *E* in the start screen. This *E* is displayed until the exercise event has expired. Moreover, the date of the next event is displayed in the configuration screen of the respective event exerciser.

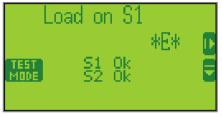


Figure 3-28: Test modes - display screen with pending exercise event

If a Load Test is currently running (the load is supplied by the non-preferred source), the remaining test time is displayed as a count-down timer. The running test may be terminated using the Bypass button.

Figure 3-29: Test modes - display screen with running load test

© Woodward Page 65/158

^{*} N/A means that this setting is not important for the respective Exerciser Type

Monitoring

Monitoring: Alarm Acknowledgement

Self acknowledgment of the centralized alarm (horn)

0 to 1,000 s

After each alarm occurs, the alarm LED flashes and the command variable 03.05 (horn) is issued. After the delay time 'time until horn reset' has expired, the flashing LED changes into a steady light and the command variable 03.05 (horn) is reset. The alarm LED is illuminated continuously until the alarm has been acknowledged.

Note: If this parameter is configured to 0, the horn will remain active until it will be acknowledged.

Protection: External acknowledgment of alarms

LogicsManager

It is possible to acknowledge all alarms simultaneously from remote, e.g. with a discrete input. The command variables of the *LogicsManager* have to become TRUE twice.

① The first high signal into the discrete input acknowledges the command variable 03.05 (horn). The second high signal acknowledges all inactive alarm messages.

The ON-delay time is the minimum time the input signals have to be "1". The OFF-delay time is the time how long the input conditions have to be "0" before the next high signal is accepted.

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Monitoring: Limit Switch Monitoring

Limit switch monitoring

ON / OFF

Limit switch monitoring evaluates the ATS limit switch replies and checks them for plausibility with reference to the operating state. If the replies are not plausible, the "Actual" and "Expected" replies are displayed.

Meanwhile, the status of the breaker replies cannot be reset with the Reset button and all further transfers are inhibited.

A table with the actual and expected replies may be found in the Operation Manual 37484.

ON.....The replies of the ATS limit switch are evaluated and compared with the expected replies.

OFF.....The replies of the ATS limit switch are not evaluated.

Note: Do not enable this monitoring function before the system is commissioned and fully operational. Otherwise, missing reply signals would lead to a limit switch failure, which blocks the control unit. This can only be solved by wiring the reply signals correctly or disabling this function using ToolKit.

Page 66/158 © Woodward

Monitoring: Source 1 Monitoring

Voltage monitoring source 1

Ph - Ph / Phase - N

The unit can either monitor the wye voltages (phase-neutral: 3ph-4w, 1ph-3w and 1ph-2w) or the delta voltages (phase-phase: 3ph-3w and 3ph-4w).

! WARNING:

This parameter influences the protective functions.

Ph - Ph....... The phase-phase voltage will be measured and all subsequent parameters concerning voltage monitoring "source 1" are referred to this value (V_{L-L}) .

Phase - N The phase-neutral voltage will be measured and all subsequent parameters concerning voltage monitoring "source 1" are referred to this value (V_{L-N}) .

Monitoring: Source 1 Monitoring: Undervoltage

Voltage is monitored depending on parameter 1787 "Voltage monitoring S1".

Source 1 undervoltage restore

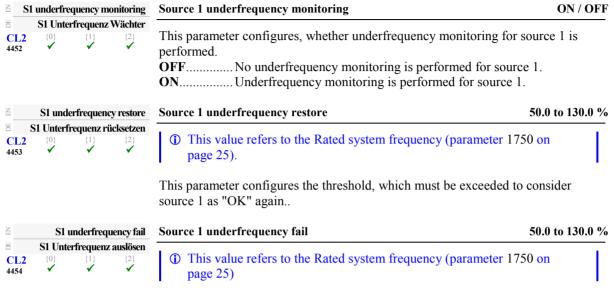
50.0 to 125.0 %

① This value refers to the Rated voltage Source 1 (parameter 1774 on page 25).

This parameter configures the threshold, which must be exceeded to consider source 1 as "OK" again.

Source 1 undervoltage fail

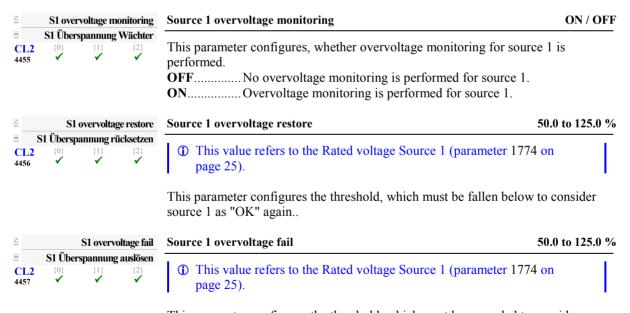
50.0 to 125.0 %


① This value refers to the Rated voltage Source 1 (parameter 1774 on page 25).

This parameter configures the threshold, which must be fallen below to consider source 1 as "not OK".

© Woodward Page 67/158

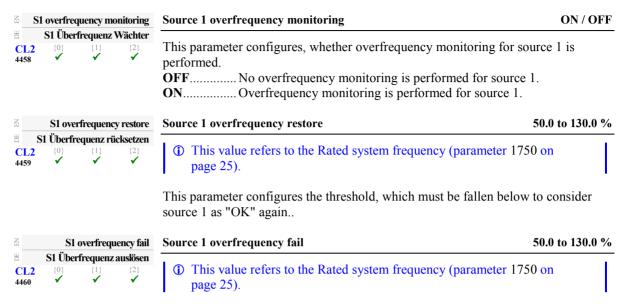
Monitoring: Source 1 Monitoring: Underfrequency


Frequency is correctly measured using 1 to 3 phase inputs, with the voltage higher than 15 % of rated value. However, with three phase inputs, the frequency measurement is very rapid and highly accurate.

This parameter configures the threshold, which must be fallen below to consider source 1 as "not OK".

Monitoring: Source 1 Monitoring: Overvoltage

Voltage is monitored depending on parameter 1787 "Voltage monitoring S1".

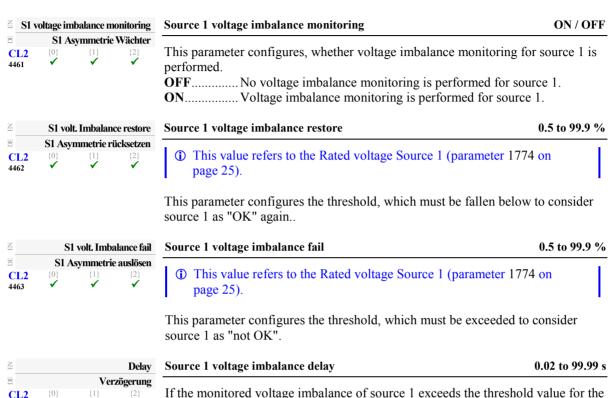


This parameter configures the threshold, which must be exceeded to consider source 1 as "not OK".

Page 68/158 © Woodward

Monitoring: Source 1 Monitoring: Overfrequency

Frequency is correctly measured using 1 to 3 phase inputs, with the voltage higher than 15 % of rated value. However, with three phase inputs, the frequency measurement is very rapid and highly accurate.


This parameter configures the threshold, which must be exceeded to consider source 1 as "not OK".

© Woodward Page 69/158

Monitoring: Source 1 Monitoring: Voltage Imbalance

3914

The voltage imbalance monitoring is practically used to detect defective fuses in certain phases. The voltage imbalance monitoring measures voltage differences between the phases of source 1. The voltage is measured three-phase. If the phase-to-phase voltage difference between the three phases exceeds the configured imbalance limit the alarm will be issued.

delay time configured here, an alarm will be issued.

Page 70/158 © Woodward

Monitoring: Source 1 Monitoring: Phase Rotation

CAUTION

Please ensure during installation that all voltages applied to this unit are wired correctly to both sides of the circuit breaker. Failure to do so may result in damage to the control unit and/or generation equipment due to closing the breaker asynchronous or with mismatched phase rotations and phase rotation monitoring enabled at all connected components (engine, generator, breakers, cable, busbars, etc.).

This function may block a connection of systems with mismatched phases systems only under the following conditions:

- The voltages being measured are wired correctly with respect to the phase rotation at the measuring points (i.e. the voltage transformer in front and behind the circuit breaker)
- The measuring voltages are wired without angular phase shift or interruption from the measuring point to the control unit
- The measuring voltages are wired to the correct terminals of the control unit (i.e. L1 of the generator is connected with the terminal of the control unit which is intended for the L1 of the generator)

Correct phase rotation of the phase voltages ensures that damage will not occur during a transfer to either source 1 or source 2. The voltage phase rotation monitoring checks the phase rotation of the voltages and the configured phase rotation to ensure they are identical. The directions of rotation are differentiated as "clockwise" and "counter-clockwise". With a clockwise field the direction of rotation is "L1-L2-L3"; with a counter clockwise field the direction of rotation is "L1-L3-L2". If the control is configured for a clockwise rotation and the voltages into the unit are calculated as counterclockwise the alarm will be initiated.

A connection to any source can occur only if the incoming source has the correct phase sequence in relation to the source that is connected to the load. No transfer will occur if the incoming source has an incorrect phase sequence with this parameter enabled.

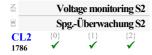
Source 1 phase rotation monitoring

ON / OFF

This parameter configures, whether phase rotation monitoring for source 1 is performed.

Source 1 phase rotation

CW / CCW


This parameter configures the phase rotation of the system. If a different phase rotation is detected at source 1, source 1 is considered as "not OK" and a transfer to source 2 is initiated.

CW..... The three-phase measured Source 1 voltage is rotating CW (clockwise; that means the voltage rotates in direction L1-L2-L3; standard setting).

CCW...... The three-phase measured Source 1 voltage is rotating CCW (counter-clockwise; that means the voltage rotates in direction L1-L3-L2; standard setting).

© Woodward Page 71/158

Monitoring: Source 2 Monitoring

Voltage monitoring source 2

Ph - Ph / Phase - N

The unit can either monitor the wye voltages (phase-neutral: 3ph-4w, 1ph-3w and 1ph-2w) or the delta voltages (phase-phase: 3ph-3w and 3ph-4w).

! WARNING:

This parameter influences the protective functions.

Ph - PhThe phase-phase voltage will be measured and all subsequent parameters concerning voltage monitoring "source 2" are referred to this value (V_{I-I}) .

Phase - N.....The phase-neutral voltage will be measured and all subsequent parameters concerning voltage monitoring "source 2" are referred to this value (V_{I-N}) .

Monitoring: Source 2 Monitoring: Undervoltage

Voltage is monitored depending on parameter 1786 "Voltage monitoring S2".

Source 2 undervoltage restore

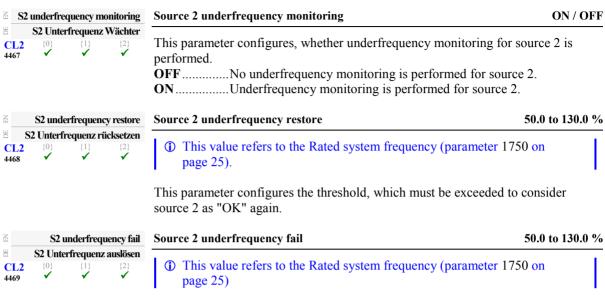
50.0 to 125.0 %

① This value refers to the Rated voltage Source 2 (parameter 1772 on page 25).

This parameter configures the threshold, which must be exceeded to consider source 2 as "OK" again.

Source 2 undervoltage fail

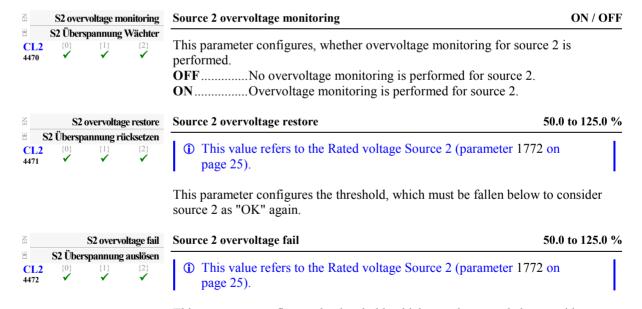
50.0 to 125.0 %


① This value refers to the Rated voltage Source 2 (parameter 1772 on page 25).

This parameter configures the threshold, which must be fallen below to consider source 2 as "not OK".

Page 72/158 © Woodward

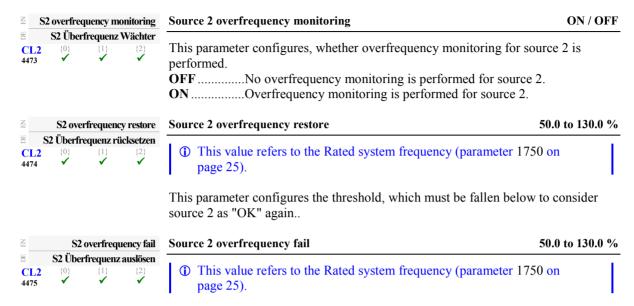
Monitoring: Source 2 Monitoring: Underfrequency


Frequency is correctly measured using 1 to 3 phase inputs, with the voltage higher than 15% of rated value. However, with three phase inputs, the frequency measurement is very rapid, and highly accurate.

This parameter configures the threshold, which must be fallen below to consider source 2 as "not OK".

Monitoring: Source 2 Monitoring: Overvoltage

Voltage is monitored depending on parameter 1786 "Voltage monitoring S2".

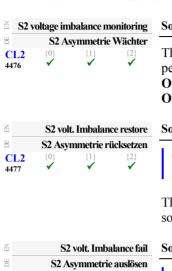


This parameter configures the threshold, which must be exceeded to consider source 2 as "not OK".

© Woodward Page 73/158

Monitoring: Source 2 Monitoring: Overfrequency

Frequency is correctly measured using 1 to 3 phase inputs, with the voltage higher than 15% of rated value. However, with three phase inputs, the frequency measurement is very rapid, and highly accurate.



This parameter configures the threshold, which must be exceeded to consider source 2 as "not OK".

Page 74/158 © Woodward

Monitoring: Source 2 Monitoring: Voltage Imbalance

The voltage imbalance monitoring is practically used to detect defective fuses in certain phases. The voltage imbalance monitoring measures voltage differences between the phases of source 2. The voltage is measured three-phase. If the phase-to-phase voltage difference between the three phases exceeds the configured imbalance limit the alarm will be issued.

Source 2 voltage imbalance monitoring

ON / OFF

This parameter configures, whether voltage imbalance monitoring for source 1 is performed.

OFF......No voltage imbalance monitoring is performed for source 1. **ON**......Voltage imbalance monitoring is performed for source 1.

Source 2 voltage imbalance restore

0.5 to 99.9 %

① This value refers to the Rated voltage Source 2 (parameter 1772 on page 25).

This parameter configures the threshold, which must be fallen below to consider source 2 as "OK" again..

Source 2 voltage imbalance fail

0.5 to 99.9 %

① This value refers to the Rated voltage Source 2 (parameter 1772 on page 25).

This parameter configures the threshold, which must be exceeded to consider source 2 as "not OK".

Source 2 voltage imbalance delay

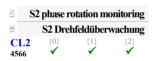
0.02 to 99.99 s

If the monitored voltage imbalance of source 2 exceeds the threshold value for the delay time configured here, an alarm will be issued.

© Woodward Page 75/158

Monitoring: Source 2 Monitoring: Phase Rotation

CAUTION


Please ensure during installation that all voltages applied to this unit are wired correctly to both sides of the circuit breaker. Failure to do so may result in damage to the control unit and/or generation equipment due to closing the breaker asynchronous or with mismatched phase rotations and phase rotation monitoring enabled at all connected components (engine, generator, breakers, cable, busbars, etc.).

This function may block a connection of systems with mismatched phases systems only under the following conditions:

- The voltages being measured are wired correctly with respect to the phase rotation at the measuring points (i.e. the voltage transformer in front and behind the circuit breaker)
- The measuring voltages are wired without angular phase shift or interruption from the measuring point to the control unit
- The measuring voltages are wired to the correct terminals of the control unit (i.e. L1 of the generator is connected with the terminal of the control unit which is intended for the L1 of the generator)

Correct phase rotation of the phase voltages ensures that damage will not occur during a transfer to either source 1 or source 2. The voltage phase rotation monitoring checks the phase rotation of the voltages and the configured phase rotation to ensure they are identical. The directions of rotation are differentiated as "clockwise" and "counter-clockwise". With a clockwise field the direction of rotation is "L1-L2-L3"; with a counter clockwise field the direction of rotation is "L1-L3-L2". If the control is configured for a clockwise rotation and the voltages into the unit are calculated as counterclockwise the alarm will be initiated.

A connection to any source can occur only if the incoming source has the correct phase sequence in relation to the source that is connected to the load. No transfer will occur if the incoming source has an incorrect phase sequence with this parameter enabled.

Source 2 phase rotation monitoring

ON / OFF

This parameter configures, whether phase rotation monitoring for source 2 is performed.

OFFNo phase rotation monitoring is performed for source 2. **ON**Phase rotation monitoring is performed for source 2.

Source 2 phase rotation

 $\mathbf{CW} / \mathbf{CCW}$

This parameter configures the phase rotation of the system. If a different phase rotation is detected at source 2, source 2 is considered as "not OK" and a transfer to source 1 is initiated.

CWThe three-phase measured Source 2 voltage is rotating CW (clockwise; that means the voltage rotates in direction L1-L2-L3; standard setting).

CCWThe three-phase measured Source 2 voltage is rotating CCW (counter-clockwise; that means the voltage rotates in direction L1-L3-L2; standard setting).

Page 76/158 © Woodward

Monitoring: In-Phase Monitoring (Synch Check)

The in-phase monitoring function is used to determine whether the phase angles of the preferred source and the non-preferred source are in phase, i.e. whether the relative phase difference of the two sources is within specified limits.

Whenever one power source fails, the control follows the programmed transition operation sequence. If in-phase monitoring is enabled and both sources are available as determined by the "restore value" levels, the control shall follow the in-phase monitoring operation sequence.

In-phase Monitoring may be used to improve the transfer with open transition switches. An open (standard) transition transfer switch is the most simple and commonly used ATS. It may only take on two positions, connected with source 1, or connected with source 2. If it transfers a load, this will be performed according to the break-before-make process, i.e. the load will be disconnected from the previous source before it will be connected with the next source. This results a dead time of approximately 160 ms (depending on the ATS) during which the load is not connected to a source. Most of the load consumers are not affected by this dead time in the transfer phase (lamps may only flicker, etc.), but some appliances may be effected seriously, like computers and motor loads, etc. This could lead up data loss or equipment damage. The problem is that the consumers behave like generators during this dead time and supply power. While some consumers are running out when changing to the other source, very high current may flow between generator and load because the phase angles between the two systems are not synchronous.

This high equalizing current may be minimized by two means:

- <u>Using a transfer switch with neutral position</u>
 If delayed transition is used, the residence time in neutral position can be extended long enough before transfer for the voltages at the load to decay.
- <u>Using inphase monitoring</u>
 Inphase monitoring checks the phase angle between source 1 and source 2 prior to a transfer and enables the transfer signal only if the phase angle has fallen below a configured threshold. Moreover, the unit calculates the leading angle for the closing commands by entering the "Switch reaction time" to enable a transfer with almost 0° phase shift. This ensures a nearly synchronous transfer to the other source and reduces the

equalizing current to a minimum. Compared with the neutral position of a delayed transition switch, the advantage is that the load must not be shut down completely prior to a transfer.

Inphase monitoring may be used with open, delayed, and closed transition switches. As mentioned above, high

equalizing current after a transfer may be minimized when utilizing inphase monitoring. However, the behavior of the ATS in case of a failed inphase transition must be considered. This may happen if the generator is equipped with a poorly adjusted frequency controller. Then, it may happen that it is not possible to achieve synchronicity. But the load must be transferred to the other source in any case.

NOTE

Refer to parameter 4582 "Outcome on in-phase timeout" for the ATS behavior in case of a failed inphase transition.

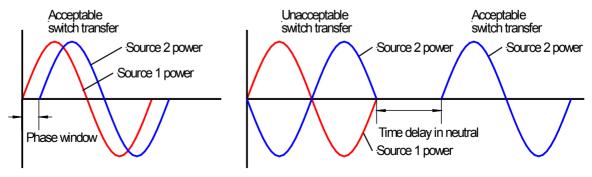


Figure 3-30: Inphase monitoring

© Woodward Page 77/158

Monitoring: In-phase Monitoring: Parameters

呂	In-Phase monitor						
E		Synch	rocheck				
CL2 4570	{0} ✓	{1} ✓	{2}				

In-phase monitoring

ON / OFF

NOTE

If in-phase monitoring is enabled and the measurement principle for source 1 (parameter 1862) is configured as "1Ph 2W", the measurement principle for source 2 (parameter 1861) must also be configured as "1Ph 2W".

Monitoring: Load transfer between two utility sources with special (phase angle) conditions

NOTE

To transfer the load between two utility sources for a self adjusted phase angle range is valid for application mode UTIL-UTIL only.

Monitoring: Connect synchronous mains: Parameters

Connect synchronous mains

ON / OFF

Monitoring: Max. phase angle: Parameters

Maximum phase angle

2° to 20°

This parameter configures the maximum admissible phase angle between both voltage systems in case of connecting synchronous mains.

The monitored range starts from 0 (zero) and goes through the value set with this parameter.

Example:

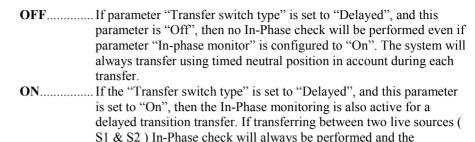
If the Max. phase angle is set to 10,

the covered range for the phase angle is $0^{\circ} \dots 10^{\circ}$.

Page 78/158 © Woodward

In-phase check for DLY trans.

Sync bei verzögertem Transfer


CL2 {0} {1} {2}

4585 ✓

Inphase check for DLY trans

ON / OFF

Note: This parameter is used only if "Delayed" transition mode is selected.

"Neutral" position timer will be automatically bypassed.

Application example:

Parameter "Transfer switch type" is configured to "Closed"
 Parameter "In-phase monitor" is configured to "On"
 LogicsManager "Delayed mode act." is used, to switch between operating modes "Delayed and Closed" transition via an externally mounted Keyswitch.

Note: During commissioning it can happen that the utility company does not allow closed transition transfers between two sources unless they have permitted the ATS system owner to do it. In that case a key-switch can be installed to the ATS cabinet to toggle the operating modes between "Closed" and "Delayed" transition. If set to "Closed" transition mode, the DTSC-200 will always perform in-phase transfers between the two sources. If the customer switches the transition mode to "Delayed" (via the external keyswitch) and he does not want the "In-Phase monitor" to be active, the parameter "In-Phase check for DLY transfer" shall be set to "Off". This ensures that "In-phase monitoring" is definitely deactivated for delayed transition transfers even if parameter "In-phase monitor" is configured to "On". If the customer switches the Keyswitch back to "closed" transition mode, then the system will perform closed transition transfers.

© Woodward Page 79/158

Voltage window for synchronization

0.50 to 20.00 %

1 This value refers to the Rated voltage Source 1/2 (parameters 1774/1772 on page 25).

This parameter configures the maximum permissible voltage difference in each of the three phases. The voltage differences in all three phases ($V_{L1 \, (Source \, 1)} - V_{L1 \, (Source \, 2)} / V_{L2 \, (Source \, 2)} / V_{L3 \, (Source \, 2)} / V_{L3 \, (Source \, 2)}$) must be within the limit configured here to be able to synchronize.

If the voltage difference in at least one phase exceeds this limit, the synchronization will not be enabled.

Positive frequency window for synchronization

0.02 to 0.49 Hz

This parameter configures the maximum permissible positive frequency difference between source 2 and source 1 ($\Delta f = S2-S1$).

If the frequency difference is not within the limits configured here, the synchronization will not be enabled because the frequency difference of the source to be connected to is too high.

Negative frequency window for synchronization

-0.02 to -0.49 Hz

This parameter configures the minimum permissible negative frequency difference between source 2 and source 1 ($\Delta f = S2-S1$).

If the frequency difference is not within the limits configured here, the synchronization will not be enabled because the frequency difference of the source to be connected to is too low.

Page 80/158 © Woodward

Maximum Overlap Time

NOTE

This function is only effective if the transfer switch type (parameter 3424) is configured to "Closed" and in-phase monitoring (parameter 4570) is enabled.

NOTE

If the *LogicsManager* function "Extended parallel time" (parameter 12860) is TRUE, the maximum overlap time is not effective.

If a closed transition is performed, the overlap time of the make-before-break process, in which both sources are parallel, is less than 100 ms. If this time is to be extended, an overlap timer is available to keep the transition switch in overlap position for a configured time. The timer starts as soon as the transition switch is in overlap position. The source, from which the transfer has been initiated, will be disconnected and the load will be supplied by the new source as soon as this timer has expired.

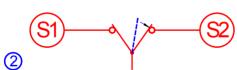
S		Max. over	rlap time
8		Max. Sync	chronzeit
CL2 4577	{0} ✓	{1} ✓	{2}

Maximum overlap time

0.1 to 9.99 s

0.11 - 9.99 The time for which the transfer switch shall remain in overlap position is configured here.

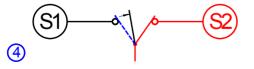
NOTE


If one source fails before this timer expires, the failed source will automatically be disconnected.

The following example shows a typical transfer sequence from source 1 to source 2 with overlap timer:

Initial situation:

Load is supplied by source 1.


A transfer is initiated (e.g. by a load test):

As soon as source 2 is detected as stable and synchronicity is achieved, the transfer switch is closed to source 2.

Overlap timer is active:

The transfer switch remains in overlap position as long as the overlap timer has not expired and load is supplied by both sources.

Maximum overlap time expires:

As soon as the configured maximum overlap time has expired, the transfer switch opens from source 1.

Final situation:

Load is supplied by source 2.

© Woodward Page 81/158

Switch Reaction Time Configuration

Open transition switch reaction time

15 to 300 ms

The time, which is required by the switch in open transition mode to open from one source and close to the other source, is configured here.

This time is required for calculating the lead angle for inphase transfers.

Closed transition switch reaction time

15 to 300 ms

The time, which is required by the switch in closed transition mode to close to the other source to parallel, is configured here.

This time is required for calculating the lead angle for inphase transfers.

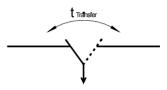


Figure 3-31: Switch reaction time

Vector Group Angle Adjustment

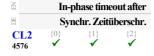
WARNING

It is critical that the following parameter is configured correctly to prevent incorrect synchronization settings. This parameter cannot compensate for incorrect wiring of the system!

Vector group angle adjustment

-180° to 180°

This parameter compensates phase angle deviations, which can be caused by transformers (e.g. a delta to wye transformer) located within the electrical system. Ensure the following parameters are configured correctly to prevent erroneous synchronization settings. Incorrect wiring of the system cannot be compensated for with this parameter.


Please act as follows: If a transformer is not located between source S1 and S2 or if the transformer has a vector group without a phase angle deviation, then a phase angle deviation of 0° should be configured in this parameter.

NOTE: Further information can be found in chapter "Commissioning Note" on the next page.

WARNING: Ensure this parameter is configured correctly to prevent erroneous synchronization settings. Incorrect wiring of the system cannot be compensated for with this parameter.

Page 82/158 © Woodward

Outcome on Inphase Timeout

Inphase timeout after

0 to 6,500 s

This parameter configures the maximum time for attempting to detect synchronization. This timer starts to count as soon as inphase monitoring is enabled prior to a transfer. If synchronicity is detected between the two sources, the transfer command will be issued. The timer will be bypassed.

Outcome on inphase timeout

Abort / Delayed

This parameter determines the behavior of the unit after unsuccessful synchronization using the following 2 options:

Abort The transfer will be aborted. **Delayed** A delayed transition will be performed.

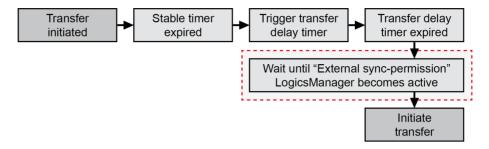
Example:

If a load test is requested and inphase monitoring is enabled (parameter 4570 is configured to "ON"), the inphase timeout timer (parameter 4576) starts prior to a transfer and the unit attempts to detect synchronization between the two sources. If no synchronization can be detected before the timer expires (because of a misadjusted voltage or speed controller at the engine for example), the behavior configured here determines the further transfer proceeding.

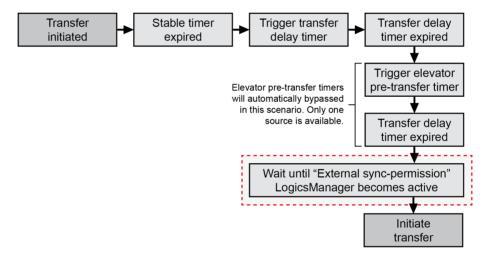
If **Abort** is configured here, the complete transfer request will be aborted. This means that all remote start requests (like load test) will be ignored if they are still present and the system will remain on the available source.

If **Delayed** is configured here, a delayed transition will be performed. This means that the switch changes to neutral position for a configured time to ramp down connected motor loads before it changes to the other source. This is important for de-energized motors to ramp down, because, for a short time, they act as generators.

Note: This function may only be used, if "Delayed" or "Closed" is configured as "Transfer switch type" (parameter 3424). If "Standard" is configured as "Transfer switch type" (parameter 3424) and "Outcome on In-phase timeout" is configured to "Delayed", the unit behaves as if "Abort" would have been configured here.

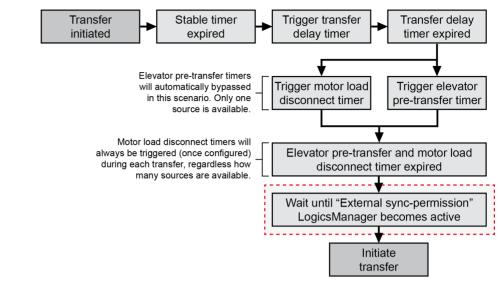

© Woodward Page 83/158

External sync. permission


This parameter allows to externally control the in-phase monitoring function. "Closed transfer enable" (parameter 12880) LogicsManager statement must be made logically "TRUE" for operation of parameter 4584.

Examples external sync permission:

Scenario 1 Elevator pre-transfer signal is "Disabled" Motor load disconnect signal is "Disabled"


Scenario 2 Elevator pre-transfer signal is "Enabled" Motor load disconnect signal is "Disabled"

Page 84/158 © Woodward

Scenario 3..... Elevator pre-transfer signal is "Enabled"

Motor load disconnect signal is "Enabled"

Ext. permit for cld. trans.

ON / OFF

① This value refers to in-phase monitoring (parameter 4570). This parameter must be configured to "On".

ON In-Phase monitoring is initiated via LogicsMananger (parameter 12880).

OFF In-Phase monitoring is initiated by the DTSC-200.

Enable closed transition

LogicsManager

The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Note:

This parameter is only visible if "Ext. permit for cld. trans." (parameter 4584 is configured to "On".

© Woodward Page 85/158

Monitoring: Overcurrent

Current is monitored depending on the parameters 1860 "S2 Load current measuring" and 1863 "S1 Load current measuring". Only the current of the source, which is connected to the load, is measured, because the CT is located at the load connection. The load overcurrent alarm contains three limits and can be setup as a step definite time overcurrent alarm as illustrated in the figure below. Monitoring of the maximum phase current is performed in three steps. Every step can be provided with a delay time independent of the other steps.

If this protective function is triggered, the alarm list indicates "Overcurrent 1", "Overcurrent 2", or "Overcurrent 3".

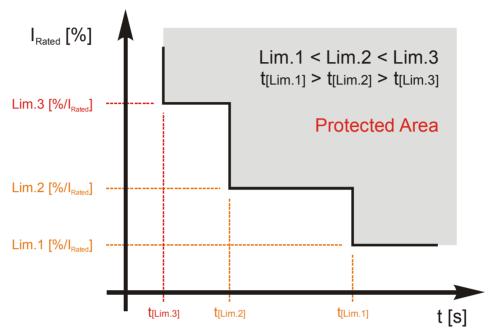
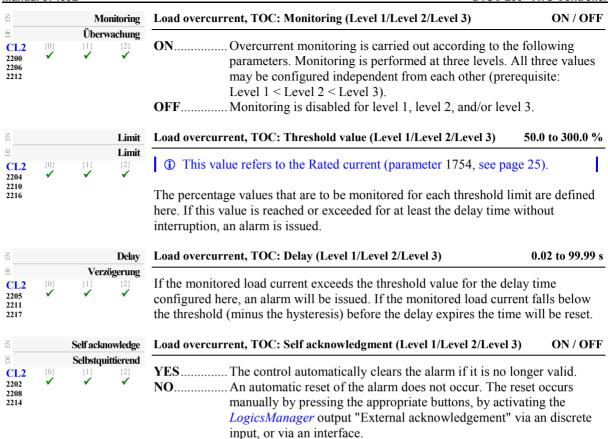


Figure 3-32: Monitoring - load time-overcurrent


Parameter table

The parameters represented in this table are specified in the following, whereas the description is identical for all levels; the levels may only differ in their setting ranges.

Level	Text	Setting range	Standard value	
Overcurren	nt (the hysteresis is 1 % of the rated value)			
Level 1	Monitoring	ON / OFF	ON	
	Limit	50.0 to 300.0 %	110.0 %	
	Delay	0.02 to 99.99 s	30.00 s	
	Self-acknowledgment	YES / NO	NO	
Level 2	Monitoring	ON / OFF	ON	
	Limit	50.0 to 300.0 %	150.0 %	
	Delay	0.02 to 99.99 s	1.00 s	
	Self-acknowledgment	YES / NO	NO	
Level 3	Monitoring	ON / OFF	ON	
	Limit	50.0 to 300.0 %	250.0 %	
	Delay	0.02 to 99.99 s	0.40 s	
	Self-acknowledgment	YES / NO	NO	

Table 3-3: Monitoring - standard values - load time-overcurrent

Page 86/158 © Woodward

© Woodward Page 87/158

Monitoring: Overload

Power is monitored depending on the parameters 1861 "S2 voltage measuring", 1862 "S1 voltage measuring", 1860 "S2 Load current measuring" and 1863 "S1 Load current measuring". Only the power of the source, which is connected to the load, is measured, because the CT is located at the load connection. If the real power is above the configured limit an alarm will be issued.

If this protective function is triggered, the alarm list indicates "Overload 1" or "Overload 2".

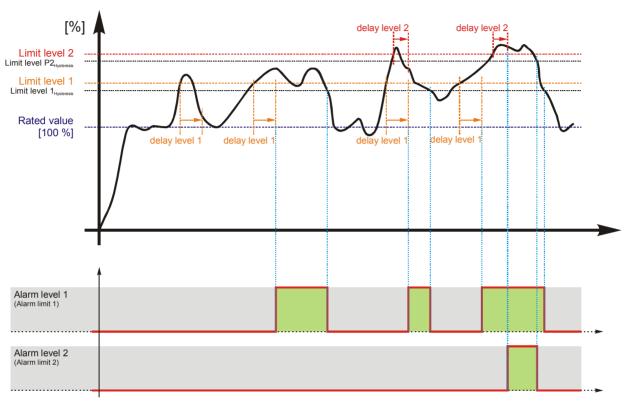
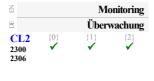


Figure 3-33: Monitoring - overload


Parameter table

The parameters represented in this table are specified in the following, whereas the description is identical for all levels; the levels may only differ in their setting ranges.

Level	Text	Setting range	Standard value
Overload (t	he hysteresis is 1 % of the rated value)		
Level 1	Monitoring	ON / OFF	ON
	Limit	50.0 to 300.0 %	110.0 %
	Delay	0.02 to 99.99 s	11.00 s
	Self-acknowledgment	YES / NO	NO
Level 2	Monitoring	ON / OFF	ON
	Limit	50.0 to 300.0 %	120.0 %
	Delay	0.02 to 99.99 s	0.10 s
	Self-acknowledgment	YES / NO	NO

Table 3-4: Monitoring - standard values - overload

Page 88/158 © Woodward

Overload: Monitoring (Level 1/Level 2)

ON / OFF

OFF..... Monitoring is disabled for level 1 and/or level 2.

Overload: Threshold value (Level 1/Level 2)

50.0 to 300.00 %

① This value refers to the Rated active power (parameter 1752, see page 25).

The percentage values that are to be monitored for each threshold limit are defined here. If this value is reached or exceeded for at least the delay time without interruption, an alarm is issued.

Overload: Delayed (Level 1/Level 2)

0.02 to 99.99 s

If the monitored load exceeds the threshold value for the delay time configured here, an alarm will be issued. If the monitored load falls below the threshold (minus the hysteresis) before the delay expires the time will be reset.

Overload: Self acknowledgment (Level 1/Level 2)

YES / NO

© Woodward Page 89/158

Monitoring: Engine, Start Failure Source 1

If this protective function is triggered, the alarm list indicates "Start Fail S1".

Source 1 start fail: delay time

1 to 6500 s

If the "S1 start delay" timer has expired, the engine start signal will be issued. If the "engine start" relay de-energizes, "Source 1 start fail delay" timer starts to count. Now, the controller expects the engine to start within the time configured here. If this time will be exceeded, a "Start Fail S1" alarm will be issued.

If this timer is running, the "Starting S1" message is displayed.

This parameter is only visible, if the application mode (parameter 4148) is configured to "Gen-Gen".

Monitoring: Engine, Start Failure Source 2

If this protective function is triggered, the alarm list indicates "Start Fail S2".

Source 2 start fail: delay time

1 to 6500 s

If the "S2 start delay" timer has expired, the engine start signal will be issued. If the "engine start" relay de-energizes, "Source 2 start fail delay" timer starts to count. Now, the controller expects the engine to start within the time configured here. If this time will be exceeded, a "Start Fail S2" alarm will be issued.

If this timer is running, the "Starting S2" message is displayed.

Page 90/158 © Woodward

Monitoring: Battery, Overvoltage

There are two battery overvoltage alarm levels available in the control. Both alarms are definite time alarms and are illustrated in the below figure. The figure diagrams a frequency trend and the associated pickup times and length of the alarms. It should be noted that this figure illustrates a level 1 alarm that is self-acknowledged. Monitoring of the voltage is done in two steps.

If this protective function is triggered, the alarm list indicates "Batt.overvolt.1" or "Batt.overvolt.2".

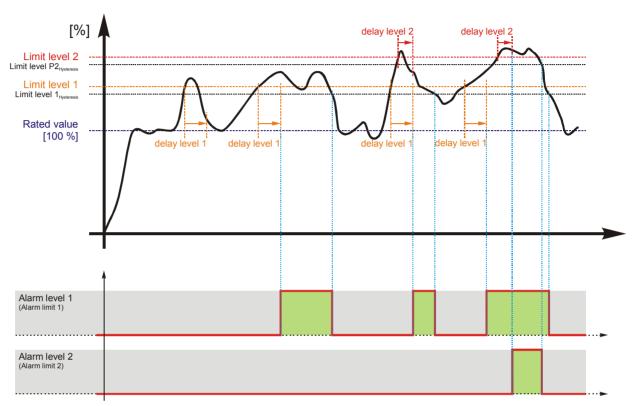


Figure 3-34: Monitoring - battery overvoltage

Parameter table

The parameters represented in this table are specified in the following, whereas the description is identical for all levels; the levels may only differ in their setting ranges.

Level	Text Setting range		Standard value
Battery overvo	oltage (the hysteresis is 0,7 % of the rated	l value.)	
Level 1	Monitoring	ON / OFF	ON
	Limit	8.0 to 42.0 V	32.0 V
	Delay	0.02 to 99.99 s	5.00 s
	Self-acknowledgment	YES / NO	NO
Level 2	Monitoring	ON / OFF	OFF
	Limit	8.0 to 42.0 V	35.0 V
	Delay	0.02 to 99.99 s	1.00 s
	Self-acknowledgment	YES / NO	NO

Table 3-5: Monitoring - standard values - battery overvoltage

© Woodward Page 91/158

A		Monitoring	Battery overvoltage: Monitoring (Level 1/Level 2)	ON / OFF
CL2 3450 3456	{0} ✓	Überwachung {1} {2}	ONOvervoltage monitoring of the battery voltage is carrie according to the following parameters. OFFMonitoring is disabled for level 1 and/or level 2.	d out
Z		Limit	Battery overvoltage: Threshold value (Level 1/Level 2)	8.0 to 42.0 V
B		Limit		24 1
CL2 3454 3460	{0} ✓	{1} {2}	The threshold values that are to be monitored are defined here. If the battery voltage reaches or exceeds this value for at least the delay tin interruption, an alarm is issued.	
A		Delay	Battery overvoltage: Delay time (Level 1/Level 2)	0.02 to 99.99 s
DE		Verzögerung		
CL2 3455 3461	{0} ✓	{1}	If the monitored battery voltage exceeds the threshold value for the d configured here, an alarm will be issued. If the monitored battery vol below the threshold (minus the hysteresis) before the delay expires the reset.	tage falls
A		Self acknowledge	Battery overvoltage: Self acknowledgment (Level 1/Level 2)	YES / NO
DE		Selbstquittierend		
CL2 3452 3458	{0}	(1) (2)	YESThe control automatically clears the alarm if it is no lo NOAn automatic reset of the alarm does not occur. The re manually by pressing the appropriate buttons, by active LogicsManager output "External acknowledgement" v input, or via an interface.	set occurs ating the

Page 92/158 © Woodward

Monitoring: Battery, Undervoltage

There are two battery undervoltage alarm levels available in the control. Both alarms are definite time alarms and are illustrated in the below figure. The figure diagrams a frequency trend and the associated pickup times and length of the alarms. It should be noted that this figure illustrates a level 1 alarm that is self-acknowledged. Monitoring of the voltage is done in two steps.

If this protective function is triggered, the alarm list indicates "Batt.undervolt.1" or "Batt.undervolt.2".

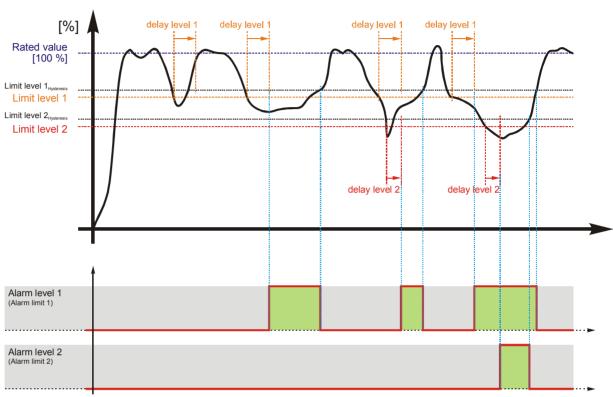


Figure 3-35: Monitoring - battery undervoltage

Parameter table

The parameters represented in this table are specified in the following, whereas the description is identical for all levels; the levels may only differ in their setting ranges.

Level	Text	Setting range	Standard value	
Battery under	rvoltage (The hysteresis is 0,7 % of the ra	ted value).		
Level 1	Monitoring	ON / OFF	ON	
	Limit	8.0 to 42.0 V	24.0 V	
	Delay	0.02 to 99.99 s	60.00 s	
	Self-acknowledgment	YES / NO	NO	
Level 2	Monitoring	ON / OFF	ON	
	Limit	8.0 to 42.0 V	20.0 V	
	Delay	0.02 to 99.99 s	10.00 s	
	Self-acknowledgment	YES / NO	NO	

Table 3-6: Monitoring - standard values - battery undervoltage

© Woodward Page 93/158

Battery undervoltage: Monitoring (Level 1/Level 2)

ON / OFF

ONUndervoltage monitoring of the battery voltage is carried out according to the following parameters.

OFF.....Monitoring is disabled for level 1 and/or level 2.

Battery undervoltage: Threshold value (Level 1/Level 2)

8.0 to 42.0 V

The threshold values that are to be monitored are defined here. If the monitored battery voltage reaches or falls below this value for at least the delay time without interruption, an alarm is issued.

Note:

The default monitoring limit for battery undervoltage is 24 Vdc after 60 seconds. This is because in normal operation the terminal voltage is approximately 26 Vdc (alternator charged battery).

Battery undervoltage: Delay time (Level 1/Level 2)

0.02 to 99.99 s

If the battery voltage falls below the threshold value for the delay time configured here, an alarm will be issued. If the battery voltage exceeds the threshold (plus the hysteresis) again before the delay expires the time will be reset.

Battery undervoltage: Self acknowledgment (Level 1/Level 2)

YES / NO

Page 94/158 © Woodward

Monitoring: CANopen Interface

The CANopen interface is monitored. If the interface does not receive a CANopen protocol message before the delay expires, an alarm will be initiated.

If this protective function is triggered, the alarm list indicates "CAN Open Fault".

CANopen Interface: Monitoring

ON / OFF

ON......Monitoring of the CANopen interface is carried out according to the following parameters.

OFF..... Monitoring is disabled.

CANopen Interface: Delay

0.1 to 650.0 s

The delay is configured with this parameter. If the interface does not receive a CANopen protocol message before the delay expires, an alarm is issued. The delay timer is re-initialized after every message is received.

CANopen Interface: Self acknowledgment

YES / NO

NOTE

This protection is only available if an external digital I/O board (e.g. IKD 1) is connected.

© Woodward Page 95/158

Discrete Inputs

Number	Terminal	Function
Internal disci	rete inputs	
[DI 1]	51	Reply from ATS limit switch: Breaker in source 1 position [S1]
[DI 2]	52	Reply from ATS limit switch: Breaker in source 2 position [S2]
[DI 3]	53	Reply from ATS limit switch: Breaker in source 1 open position [S10] #1
[DI 4]	54	Reply from ATS limit switch: Breaker in source 2 open position [S20] #1
[DI 5]	55	Control input (<i>LogicsManager</i>), pre-assigned with Inhibit ATS
[DI 6]	56	Control input (LogicsManager)
[DI 7]	57	Control input (LogicsManager)
[DI 8]	58	Control input (LogicsManager)
[DI 9]	59	Control input (LogicsManager)
[DI 10]	60	Control input (LogicsManager)
[DI 11]	61	Control input (LogicsManager)
[DI 12]	62	Control input (LogicsManager)
External disc	rete inputs (via	a CANopen; not included in DTSC delivery; can be e.g. IKD1, etc.)
[Dex01]		Control input (LogicsManager)
[Dex02]		Control input (LogicsManager)
[Dex03]		Control input (LogicsManager)
[Dex04]		Control input (LogicsManager)
[Dex05]		Control input (LogicsManager)
[Dex06]		Control input (LogicsManager)
[Dex07]		Control input (LogicsManager)
[Dex08]		Control input (LogicsManager)
[Dex09]		Control input (LogicsManager)
[Dex10]		Control input (LogicsManager)
[Dex11]		Control input (LogicsManager)
[Dex12]		Control input (LogicsManager)
[Dex13]		Control input (LogicsManager)
[Dex14]		Control input (LogicsManager)
[Dex15]		Control input (LogicsManager)
[Dex16]		Control input (LogicsManager)

^{#1..}If the transfer switch type (parameter 3424) is configured to "Standard", this DI may be used as control input (LogicsManager)

Table 3-7: Discrete inputs - assignment

Discrete inputs may be configured to normally open (N.O.) or normally closed (N.C.) states. In the state N.O., no potential is present during normal operation; if a control operation is performed, the input is energized. In the state N.C., a potential is continuously present during normal operation; if a control operation is performed, the input is de-energized.

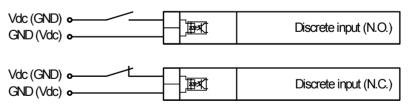


Figure 3-36: Discrete inputs - control inputs - operation logic

NOTE

The discrete inputs for the breaker position reply messages (DIs 1 through 4) are fixed to N.C. and are evaluated as N.C., i.e. the breaker is considered as "in position" if the respective DI is de-energized.

Page 96/158 © Woodward

Discrete input: Operation

N.O. / N.C.

The discrete inputs may be operated by an normally open (N.O.) or normally closed (N.C.) contact. The idle circuit current input can be used to monitor for a wire break. A positive or negative voltage polarity referred to the reference point of the DI may be applied.

N.O.....The discrete input is analyzed as "enabled" by energizing the input (normally open).

N.C.....The discrete input is analyzed as "enabled" by de-energizing the input (normally closed).

Discrete input: Delay

0.08 to 650.00 s

A delay time in seconds can be assigned to each alarm or control input. The discrete input must be enabled without interruption for the delay time before the unit reacts. If the discrete input is used within the *LogicsManager* this delay is taken into account as well.

The preceding parameters are used to configure the discrete inputs 5 through 12. The parameter IDs refer to DI 5. Refer to Table 3-8 for the parameter IDs of the parameters DI 6 through DI 12. The DIs 1 through 4 are fixed for breaker position feedback signals to the settings, which are indicated in the List Of Parameters starting on page 143 and cannot be configured. However, they may still be used for other purposes if the breaker position feedback signals are not used.

	DI 5	DI 6	DI 7	DI 8	DI 9	DI 10	DI 11	DI 12
Operation	1281	1301	1321	1341	1361	1381	1206	1226
Delay	1280	1300	1320	1340	1360	1380	1205	1225

Table 3-8: Discrete inputs - parameter IDs

If a Woodward IKD 1 or other external expansion board (Phoenix BK 16DiDo) is connected to the DTSC via the CAN bus, it is possible to use 16 additional discrete inputs.

The configuration of these external DIs is performed in a similar way like for the internal DIs. Refer to Table 3-9 for the parameter IDs of the parameters for external DIs 1 through 16.

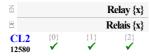
External	DI 1	DI 2	DI 3	DI 4	DI 5	DI 6	DI 7	DI 8
Operation	16001	16011	16021	16031	16041	16051	16061	16071
Delay	16000	16010	16020	16030	16040	16050	16060	16070
External	DI 9	DI 10	DI 11	DI 12	DI 13	DI 14	DI 15	DI 16
Operation	16081	16091	16101	16111	16121	16131	16141	16151
Delay	16080	16090	16100	16110	16120	16130	16140	16150

Table 3-9: External discrete inputs - parameter IDs

© Woodward Page 97/158

Discrete Outputs (LogicsManager)

The discrete outputs are controlled via the *LogicsManager*.


⇒ Please note the description of the *LogicsManager* starting on page 121.

Some outputs are assigned a function according to the application mode (see following table).

Relay		Function
Number	Term.	
Internal re	lay outputs	
[R 1]	31/32	'Ready for operation '; additionally programmable with LogicsManager
[R 2]	31/33	LogicsManager
[R 3]	31/34	LogicsManager
[R 4]	35/36/37	LogicsManager
[R 5]	39/40/41	LogicsManager (pre-defined with engine 2 start)
[R 6]	42/43	LogicsManager (pre-defined with command: close to source 1 position) [C1]
[R 7]	44/45	LogicsManager (pre-defined with command: close to source 2 position) [C2]
[R 8]	46/47	LogicsManager (pre-defined with command: open from source 1 to neutral position) [C10]
[R 9]	48/49	LogicsManager (pre-defined with command: open from source 2 to neutral position) [C2O]
External re	lay output (v	ria CANopen; not included in DTSC-200 delivery; can be an expansion card like IKD1)
[Rex01]		LogicsManager
[Rex02]		LogicsManager
[Rex03]		LogicsManager
[Rex04]		LogicsManager
[Rex05]		LogicsManager
[Rex06]		LogicsManager
[Rex07]		LogicsManager
[Rex08]		LogicsManager
[Rex09]		LogicsManager
[Rex10]		LogicsManager
[Rex11]		LogicsManager
[Rex12]		LogicsManager
[Rex13]		LogicsManager
[Rex14]		LogicsManager
[Rex15]		LogicsManager
[Rex16]		LogicsManager

Table 3-10: Relay outputs - Assignment

Page 98/158 © Woodward

Discrete outputs: *LogicsManager* for relay {x}

LogicsManager

Once the conditions of the *LogicsManager* have been fulfilled, the relay will be energized. The *LogicsManager* and its default settings are explained on page 121 in Appendix A: "*LogicsManager*".

Above parameter IDs refers to R 1. Refer to Table 3-11 for the parameter IDs of the parameters for R 2 to R 9.

	R 1	R 2	R 3	R 4	R 5	R 6	R 7	R 8	R 9
Parameter ID	12580	12110	12310	12320	12130	12140	12150	12160	12170

Table 3-11: Discrete outputs - parameter IDs

If a Woodward IKD 1 or other external expansion board (Phoenix BK 16DiDo) is connected to the DTSC via the CAN bus, it is possible to use 16 additional discrete outputs.

The configuration of these external DOs is performed in a similar way like for the internal DOs. Refer to Table 3-12 for the parameter IDs of the parameters for external DOs 1 through 16.

	DO 1	DO 2	DO 3	DO 4	DO 5	DO 6	DO 7	DO 8
Parameter ID	12330	12340	12350	12360	12370	12380	12390	12400
	DO 9	DO 10	DO 11	DO 12	DO 13	DO 14	DO 15	DO 16
Parameter ID	12410	12420	12430	12440	12450	12460	12470	12480

Table 3-12: External discrete outputs - parameter IDs

© Woodward Page 99/158

Counters

Configure Counters: Operation Hours, kWh, and kvarh

E	Counter value preset	Counter: Set point value for counters	0 to 99,999,999
CL2 2515	Zähler-Setzwert (0) (1) (2) ✓	This value is utilized to set the hours in the following paramete • kWh counter • kvarh counter	rs:
		The number entered into this parameter is the number that will parameters listed above when they are enabled.	be set to the
S	S1 active power [0.00MWh]	Counter: Set Source 1 kWh counter	YES / NO
CL2 2514	S1 Wirkarbeit [0,00MWh] {0} {1} {2} √ √	YES The current value of this counter is overwritten value for counters. After been (re)set, this parameter changes back to "NO NO The value of this counter is not changed.	r the counter has
a	S1 react. power [0.00Mvarh]	Counter: Set Source 1 kvarh counter	YES / NO
CL2 2516	81 Blindarbeit [0,00Mvarh]	YES The current value of this counter is overwritten value for counters. After been (re)set, this parameter changes back to "NO NO The value of this counter is not changed.	r the counter has
Z	Transfers to S1	Counter: Transfers to S1	0 to 65535
CL2 2576	Transfers nach S1 {0} {1} {2}	This parameter is used to configure the transfer counters to a preset it to "0" in case a new transfer switch has been build into	
		The counter for "Transfers to S1" counts, how often the ATS s closed to the Source 1 position.	witch has been
DE EN	S2 active power [0.00MWh] S2 Wirkarbeit [0,00MWh]	Counter: Set Source 2 kWh counter	YES / NO
CL2 2510	(0) (1) (2)	YES The current value of this counter is overwritten v configured in "set point value for counters". Afte been (re)set, this parameter changes back to "NO NO The value of this counter is not changed.	r the counter has
呂	S2 react. power [0.00Mvarh]	Counter: Set Source 2 kvarh counter	YES / NO
CL2 2511	82 Blindarbeit [0,00Mvarh]	YES The current value of this counter is overwritten value for counters. After been (re)set, this parameter changes back to "NO NO The value of this counter is not changed.	r the counter has

Page 100/158 © Woodward

Transfers to S2 Counter: Transfers to S2

0 to 65535

This parameter is used to configure the transfer counters to a pre-set value, or reset it to "0" in case a new transfer switch has been build into the ATS cabinet.

The counter for "Transfers to S2" counts, how often the ATS switch has been closed to the Source 2 position.

NOTE

Example: The counter value preset (parameter 2515 on page 100) is configured to "3456". If parameter 2510 will be configured to YES, the S2 active power counter will be set to 34.56MWh.

© Woodward Page 101/158

LogicsManager

LogicsManager: Internal Flags

Internal flags within the *LogicsManager* logical outputs may be programmed and used for multiple functions. For conditions and explanation of programming please refer to page 121 in chapter "*LogicsManager*").

Internal	flage	Flag	Svl	$\mathbf{v} = 1$	to Q1
internai .	mags:	riag	1X (X — I	เบอเ

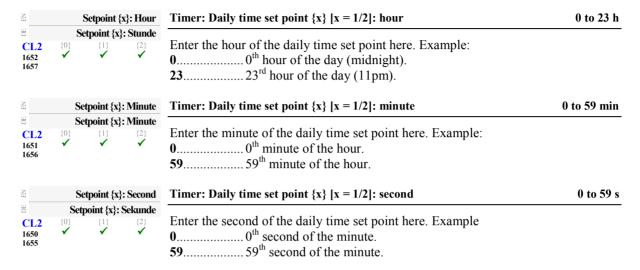
LogicsManager

The flags may be used as auxiliary flags for complex combinations by using the logical output of these flags as command variable for other logical outputs.

Parameter ID yyyyy	Flag {x}
12230	Flag 1
12240	Flag 2
12250	Flag 3
12260	Flag 4
12270	Flag 5
12280	Flag 6
12290	Flag 7
12300	Flag 8

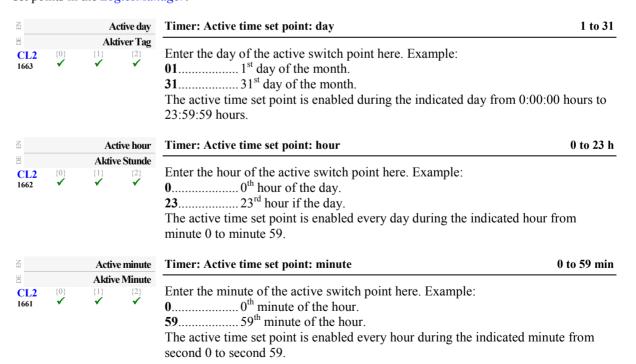
Table 3-13: Internal flags - parameter IDs

NOTE


Flag 1 is also used as placeholder in other logical combinations. Flag 8 is preset with a timer start.

Page 102/158 © Woodward

LogicsManager: Timer


LogicsManager: Daily Time Set Point

Utilizing the *LogicsManager* it is possible to establish specific times of the day that functions (i.e. generator exerciser) can be enabled. The two daily time set points are activated each day at the configured time. Using the *LogicsManager* these set points may be configured individually or combined to create a time range.

LogicsManager: Active Time Set Point

Utilizing the *LogicsManager* it is possible to establish specific days (or hours, minutes, seconds) that functions (i.e. generator exerciser) can be enabled. The active switching point is activated only on a specified day (or hour, minute, second). The set points may be configured individually or combined via the *LogicsManager*. You may configure monthly, daily, hourly, minutely, or even secondly time set points depending on how you combine the set points in the *LogicsManager*.

© Woodward Page 103/158

B		Active	e second	Timer: Active time set point: second 0 to 59	S
E		Aktive S	Sekunde		_
CL2 1660	{0}	{1} ✓	{2} ✓	Enter the second of the active switch point here. Example: 0	

LogicsManager: Weekly Time Set Point

Utilizing the *LogicsManager* it is possible to establish specific days of the week that functions (i.e. generator exerciser) can be enabled. The weekly time set point is enabled during the indicated day from 0:00:00 hours to 23:59:59 hours.

呂		Monday active	Timer: Weekly time set points Monday: days	YES / NO
CL2 1670	{0} ✓	Montag aktiv {1} (2} ✓	Please enter the days of the weekly workdays. Monday	
Z		Tuesday active	Timer: Weekly time set points Tuesday: days	YES / NO
CL2 1671	{0}	Dienstag aktiv	Please enter the days of the weekly workdays. Tuesday	
Z		Wednesday active	Timer: Weekly time set points Wednesday: days	YES / NO
CL2 1672	{0} ✓	Mittwoch aktiv	Please enter the days of the weekly workdays. Wednesday YES - NO - The switch point is disabled every Wednesday The switch point is disabled every Wednesday	
Z		Thursday active	Timer: Weekly time set points Thursday: days	YES / NO
CL2 1673	{0} ✓	Donnerstag aktiv {1} {2} ✓	Please enter the days of the weekly workdays. Thursday YES - NO - The switch point is disabled every Thursday The switch point is disabled every Thursday	
A		Friday active	Timer: Weekly time set points Friday: days	YES / NO
CL2 1674	{0} ✓	Freitag aktiv		
呂		Saturday active		YES / NO
CL2 1675	{0} ✓	Samstag aktiv	Please enter the days of the weekly workdays. Saturday YES - NO - The switch point is enabled every Saturday The switch point is disabled every Saturday	
呂		Sunday active	Timer: Weekly time set points Sunday: days	YES / NO
CL2 1676	{0} ✓	Sonntag aktiv (1) (2)	Please enter the days of the weekly workdays. Sunday	

Page 104/158 © Woodward

Interfaces

NOTE

Please refer to the Interface Manual 37486 for a detailed description of the interface parameters.

Interfaces: Device address

1 to 127

So that this control unit may be positively identified on the CAN bus, the unit address must be set in this parameter. The address may only be represented once on the CAN bus. All other addresses on the CAN bus are calculated on the basis of the address entered in this parameter.

Interfaces: CAN Bus (FlexCAN)

NOTE

The CAN bus is a field bus and subject to various disturbances. Therefore, it cannot be guaranteed that every request will be answered. We recommend repeating a request, which is not answered within reasonable time.

CAN bus: Baud rate

20 / 50 / 100 / 125 / 250 / 500 / 800 / 1,000 kBaud

This parameter defines the used Baud rate. Please note, that all participants on the CAN bus must use the same Baud rate.

© Woodward Page 105/158

Interfaces: CAN BUS: CANopen

CANopen Master

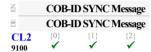
YES / NO

CAN-open Master

YES The DTSC-200 is the CANopen Master.

The unit automatically changes into operational mode and transmits Remote Start messages since Broadcast

Attached external devices were configured from the unit with SDO messages. The unit sends a SYNC message all 20ms on COB ID 80 Hex.


NO The DTSC-200 is a CANopen Slave.

CAN bus: Producer heartbeat time

20 to 65,530 ms

Independent from the CANopen Master configuration, the unit transmits a heartbeat message with this configured heartbeat cycle time. If the producer heartbeat time is equal 0, the heartbeat will only be sent as response to a remote frame request. The time configured here will be rounded up to the next 20 ms step.

COB-ID SYNC Message

1 to FFFFFFFF

This parameter defines whether the unit generates the SYNC message or not.

Complies with CANopen specification: object 1005, subindex 0; defines the COB ID of the synchronization object (SYNC). The structure of this object is shown in the following tables:

UNSIGNED 32		MSB				LSB
bits	bits	31	30	29	28-11	10-0
11 bit ID	11 bit ID	X	0/1	X	000000000000000000	11 bit identifier

bit number	value	meaning
31 (MSB)	X	N/A
30	0	Unit does not generate SYNC message
	1	Unit generates SYNC message
29	X	N/A
28-11	0	always
10-0 (LSB)	X	bits 10-0 of SYNC COB ID

Configure external devices

YES / NO

This parameter starts the configuration of external Phoenix expansion boards.

Proceed as follows to configure an external device:

- Connect external device
- Configure parameters at the DTSC (Node ID, DI/Os, AI/Os)
- Set this parameter to "Yes"
- Verify the successful configuration of the external device

Note: This parameter can only be used to configure a Phoenix expansion board. Refer to the IKD 1 manual 37135 for configuring the IKD 1 expansion boards.

Page 106/158 © Woodward

Interfaces: CAN BUS: CANopen: Additional Server SDOs

5th Server->Client COB-ID (tx)

5. Server->Client COB-ID (tx)

CL2 9034

2nd Client->Server COB-ID (rx) CAN bus: Client->Server COB-ID (rx) 1 to FFFFFFFF 2. Client->Server COB-ID (rx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9020 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the PLC. CAN bus: Server-> Client COB-ID (tx) 2nd Server->Client COB-ID (tx) 1 to FFFFFFFF 2. Server->Client COB-ID (tx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9022 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the unit. CAN bus: Client->Server COB-ID (rx) 1 to FFFFFFFF 3rd Client->Server COB-ID (rx) 3. Client->Server COB-ID (rx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9024 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the PLC. 3rd Server->Client COB-ID (tx) CAN bus: Server-> Client COB-ID (tx) 1 to FFFFFFFF 3. Server->Client COB-ID (tx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9026 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the unit. 1 to FFFFFFFF 4th Client->Server COB-ID (rx) CAN bus: Client->Server COB-ID (rx) 4. Client->Server COB-ID (rx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9028 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the PLC. 4th Server->Client COB-ID (tx) CAN bus: Server-> Client COB-ID (tx) 1 to FFFFFFFF 4. Server->Client COB-ID (tx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9030 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the unit. 5th Client->Server COB-ID (rx) CAN bus: Client->Server COB-ID (rx) 1 to FFFFFFFF 5. Client->Server COB-ID (rx) In a multi-master application, each master must have a unique identifier (Node ID) CL₂ 9032 to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the PLC.

CAN bus: Server-> Client COB-ID (tx)

1 to FFFFFFFF

In a multi-master application, each master must have a unique identifier (Node ID) to be able to receive remote signals (i.e. acknowledge). The additional SDO channel will be made available by configuring this Node ID to a value different than zero. This is the additional CAN ID for the unit.

© Woodward Page 107/158

NOTE

The COB IDs must be entered in decimal numbers in ToolKit and in hexadecimal numbers in the unit.

Here are some important conversions:

Hexadecimal value	Decimal value
80h	128
181h	385
201h	513
281h	641
301h	769
381h	897
401h	1025
481h	1153
501h	1281
581h	1409
601h	1537
80000000h	2147483648

Interfaces: CAN BUS: CANopen: Receive PDO (RPDO) $\{x\}$ ($\{x\} = 1/2$)

Figure 3-37 shows the principle of PDO mapping.

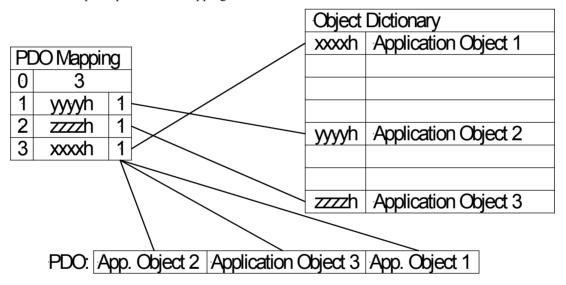


Figure 3-37: Interfaces - Principle of PDO mapping

Page 108/158 © Woodward

Receive PDO 1/2 - COB-ID

1 to FFFFFFFF

This parameter contains the communication parameters for the PDOs, the device is able to receive.

Complies with CANopen specification: object 1400 (for RPDO 1 and 1401 for RPDO 2), subindex 1. The structure of this object is shown in the following tables:

UNSIGNED 32	MSB				LSB
bits	31	30	29	28-11	10-0
11 bit ID	0/1	X	X	0000000000000000000	11 bit identifier

bit number	value	meaning
31 (MSB)	0	PDO exists / is valid
	1	PDO does not exist / is not valid
30	X	N/A
29	X	N/A
28-11	0	always
10-0 (LSB)	X	bits 10-0 of COB ID

PDO valid / not valid allows selecting, which PDOs are used in the operational state.

CAUTION

The COB-IDs have to be configured different, even if one RPDO is configured to "no func.".

Function for RPDO 1/2

no func. / 1st IKD /2nd IKD / Bk 16DIDO

The unit provides pre-configured CAN bus settings for the connection of different units. The unit to be connected must be selected here.

No func. No external unit is selected for connection. The CAN bus is disabled. Values are not sent or received.

1st IKD The unit is pre-configured for the connection of a Woodward IKD 1 expansion board.

2nd IKD The unit is pre-configured for the connection of a second Woodward IKD 1 expansion board.

BK 16 DIDO The unit is pre-configured for the connection of a Phoenix Contact BK 16 DIDO expansion board.

The following table shows several possible functional combinations:

PDO1 PDO2	2 1 st IKD	2 nd IKD	OFF
1st IKD	NO	YES	YES
2 nd IKD	YES	NO	YES
Bk 16DIDO	NO	NO	YES
no func.	YES	YES	YES

Read: If PDO1 is configured as 1. IKD, then PDO2 can only be configured as either 2. IKD or "no func.".

Node-ID of the device

1 to 127

Node-ID of the attached device. The SDO messages were sent on the standard SDO-IDs or the answers were expected.

© Woodward Page 109/158

K	RPI	O-COI	P-ID ext. d	evice {x}
E	RPI	DO-CO	P-ID ext. (Gerät {x}
C	L2	{0}	{1}	{2}
90°		✓	✓	✓

RPDO-COB-ID ext. device 1

1 to FFFFFFFF

Value to be written in the object 1800h sub index 1h of the external device.

CAUTION

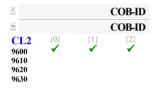
COB-IDs already used in other PDOs should be used.

COB-IDs in a CANopen device after loading the standard values:

280h + Node-ID = 640 + Node-ID Object 1801h Subindex 1 380h + Node-ID = 896 + Node-ID Object 1802h Subindex 1

480h + Node-ID = 1152 + Node-ID Object 1803h Subindex 1

The receiving COB-IDs are preallocated:


300h + Node-ID = 768 + Node-ID Object 1401h Subindex 1

400h + Node-ID = 1024 + Node-ID Object 1402h Subindex 1

500h + Node-ID = 1280 + Node-ID Object 1403h Subindex 1.

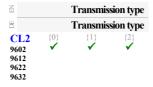
Problems may be encountered if a COB-ID is assigned multiple times.

Interfaces: CAN Bus: CANopen: Transmit PDO (TPDO) {x} ({x} = 1 to 4)

CAN bus 1: Transmit PDO 1 - COB ID

1 to FFFFFFFF

This parameter contains the communication parameters for the PDOs the unit is able to transmit. The unit transmits data (i.e. visualization data) on the CAN ID configured here.


Complies with CANopen specification: object 1800 for (TPDO 1, 1801 for TPDO 2, 1802 for TPDO 3, and 1803 for TPDO 4), subindex 1. The structure of this object is shown in the following tables:

JNSIGNED 32		MSB			LSB	
bits	bits	31	30	29	28-11	10-0
11 bit ID	11 bit ID	0/1	X	X	0000000000000000000	11 bit identifier

bit number	value	meaning
31 (MSB)	0	PDO exists / is valid
	1	PDO does not exist / is not valid
30	X	N/A
29	X	N/A
28-11	0	always
10-0 (LSB)	X	bits 10-0 of COB ID

PDO valid / not valid allows selecting, which PDOs are used in the operational state.

Page 110/158 © Woodward

CAN bus 1: Transmit PDO 1 - Transmission type

0 to 255

This parameter contains the communication parameters for the PDOs the unit is able to transmit. It defines whether the unit broadcasts all data automatically (value 254 or 255) or only upon request with the configured address of the COB ID SYNC message (parameter 9100).

Complies with CANopen specification: object 1800 (for TPDO 1, 1801 for TPDO 2, 1802 for TPDO 3, and 1803 for TPDO 4), subindex 2. The description of the transmission type is shown in the following table:

transmission type	PDO tra	nsmissior	ı			
	cyclic	acyclic	synchronous	asynchronous	RTR only	
0	will not	be sent				
1-240	X		X			
241-251	will not	will not be sent				
252	will not	be sent				
253	will not	be sent				
254				X		
255				X		

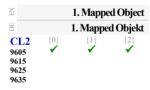
A value between 1 and 240 means that the PDO is transferred synchronously and cyclically. The transmission type indicating the number of SYNC, which is necessary to trigger PDO transmissions. Receive PDOs are always triggered by the following SYNC upon reception of data independent of the transmission types 0 to 240. For TPDOs, transmission type 254 and 255 means, the application event is the event timer.

CAN bus 1: Transmit PDO 1 - Event timer

0 to 65000 ms

This parameter contains the communication parameters for the PDOs the unit is able to transmit. The broadcast cycle for the transmitted data is configured here. The time configured here will be rounded up to the next 5 ms step.

Complies with CANopen specification: object 1800 (for TPDO 1, 1801 for TPDO 2, 1802 for TPDO 3, and 1803 for TPDO 4), subindex 5



CAN bus 1: Transmit PDO 1 - Number of mapped objects

0 to 4

This parameter contains the mapping for the PDOs the unit is able to transmit. This number is also the number of the application variables, which shall be transmitted with the corresponding PDO.

Complies with CANopen specification: object 1A00 (for TPDO 1, 1A01 for TPDO 2, 1A02 for TPDO 3, and 1A03 for TPDO 4), subindex 0

CAN bus 1: Transmit PDO 1 - 1. Mapped object

0 to 65535

This parameter contains the information about the mapped application variables. These entries describe the PDO contents by their index. The sub-index is always 1. The length is determined automatically.

Complies with CANopen specification: object 1A00 (for TPDO 1, 1A01 for TPDO 2, 1A02 for TPDO 3, and 1A03 for TPDO 4), subindex $\it l$

CAN bus 1: Transmit PDO 1 - 2. Mapped object

0 to 65535

This parameter contains the information about the mapped application variables. These entries describe the PDO contents by their index. The sub-index is always 1. The length is determined automatically.

Complies with CANopen specification: object 1A00 (for TPDO 1, 1A01 for TPDO 2, 1A02 for TPDO 3, and 1A03 for TPDO 4), subindex 2

© Woodward Page 111/158

呂		3. Mappe	d Object
DE		3. Mappe	d Objekt
CL2 9607 9617 9627 9637	{0} ✓	{1} ✓	{2}

CAN bus 1: Transmit PDO 1 - 3. Mapped object

0 to 65535

This parameter contains the information about the mapped application variables. These entries describe the PDO contents by their index. The sub-index is always 1. The length is determined automatically.

Complies with CANopen specification: object 1A00 (for TPDO 1, 1A01 for TPDO 2, 1A02 for TPDO 3, and 1A03 for TPDO 4), subindex 3

CAN bus 1: Transmit PDO 1 - 4. Mapped object

0 to 65535

This parameter contains the information about the mapped application variables. These entries describe the PDO contents by their index. The sub-index is always 1. The length is determined automatically.

Complies with CANopen specification: object 1A00 (for TPDO 1, 1A01 for TPDO 2, 1A02 for TPDO 3, and 1A03 for TPDO 4), subindex 4

NOTE

CANopen allows sending 8 byte of data with each Transmit PDO. These may be defined separately if no pre-defined data protocol is used.

All data protocol parameters with a parameter ID may be sent as an object with a CANopen Transmit PDO.

In this case, the data length will be taken from the data byte column (refer to the Data Protocols section in the Interface Manual 37486):

- 1,2 UNSIGNED16 or SIGNED16
- 3.4 UNSIGNED16 or SIGNED16
- 5,6 UNSIGNED16 or SIGNED16
- 1,2,3,4 UNSIGNED32 or SIGNED32
- 3,4,5,6 UNSIGNED32 or SIGNED32
- etc.

The object ID is identical with the parameter ID when configuring via front panel or ToolKit.

Page 112/158 © Woodward

Interfaces: Serial Interface 1 (RS-232)

Serial interface: Baud rate

2.4 / 4.8 / 9.6 / 14.4 / 19.2 / 38.4 / 65 / 115 kBaud

① A DPC (P/N 5417-557 or 5417-1257) must be used for connecting the control unit from the service interface to a PC or to another participant.

The serial interface of this unit connects to an RJ45-plug on the side of the housing. This parameter defines the baud rate that communications will be performed. Please note, that all participants on the service interface must use the same Baud rate.

3162

Serial interface: Parity

no / even / odd

The used parity of the service interface is set here.

Serial interface: Stop bits

one / two

The number of stop bits is set here.

Interfaces: Serial Interface 2 (RS-485)

Serial interface 2: Baud rate

2.4 / 4.8 / 9.6 / 14.4 / 19.2 / 38.4 / 56 / 115 kBaud

This parameter defines the baud rate for communications. Please note, that all participants on the service interface must use the same baud rate.

Serial interface 2: Parity

no / even / odd

The used parity of the service interface is set here.

Serial interface 2: Stop bits

one / two

The number of stop bits is set here.

Serial interface 2: Full-/halfduplex mode

Fullduplex / Halfduplex

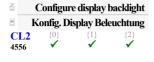
Fullduplex ... Fullduplex mode is enabled. **Halfduplex** .. Halfduplex mode is enabled.

Serial interface: Modbus Slave ID

0 to 255

The Modbus device address is entered here, which is used to identify the device via Modbus. If 0 is entered here, the Modbus Slave module is disabled.

Serial interface: Reply delay time


0.00 to 0.20 s

This is the minimum delay time between a request from the Modbus master and the sent response of the slave. This time is also required if an external interface converter to RS-485 is used for example. Please note that you also need the DPC (refer to page 14) in this case.

© Woodward Page 113/158

System

System: Configure Display Backlight

Display backlight

ON / OFF / Auto / Key actv.

This parameter determines the behavior of the display backlight. The following options are available:

ON The display backlight is always enabled.

OFF The display backlight is always disabled.

Auto The display backlight will be disabled if r

Auto.....The display backlight will be disabled if no voltage is detected anymore at both connected sources.

Key actv. The display backlight will be disabled if no softkey has been pressed for the time configured in parameter 4557. It will be enabled again after any softkey of the unit has been pressed.

Time until backlight shutdown

1 to 999 s

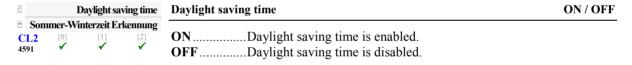
① This parameter is only visible if parameter 4556 has been configured to "Key actv.".

If no softkey has been pressed for the time configured here, the display backlight will be disabled.

Page 114/158 © Woodward

System: Configure Daylight Saving Time

It is possible to configure the real-time clock for an automatic change to daylight saving time. Start and end date/time of the daylight saving time period have to be entered for this.


Example: If daylight saving time starts at 2:00 am on the 2nd Sunday in March and ends at 2:00 am on the 1st Sunday in November, the unit has to be configured like shown in Table 3-14 to enable an automatic change to daylight saving time and back to standard time.

ID	Parameter	Setting
4591	Daylight saving time	On
4594	DST begin time	2
4598	DST begin weekday	Sunday
4592	DST begin nth weekday	2nd
4593	DST begin month	3
4597	DST end time	2
4599	DST end weekday	Sunday
4595	DST end sunday	1st
4596	DST end month	11

Table 3-14: Daylight saving time - configuration example

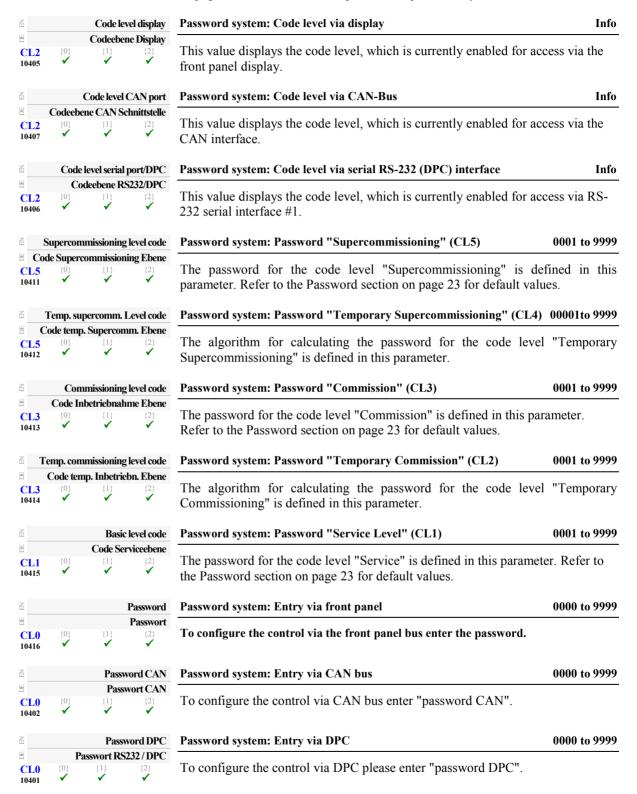
	USA, Canada		European Union		
Year	DST Begins 2 a.m.	DST Ends 2 a.m.	DST Begins 1 a.m. UTC=GMT	DST Ends 1 a.m. UTC=GMT	
	(Second Sunday in March)	(First Sunday in November)	(Last Sunday in March)	(Last Sunday in October)	
2008	March 9, 2008	November 2, 2008	March 30, 2008	October 26, 2008	
2009	March 8, 2009	November 1, 2009	March 29, 2009	October 25, 2009	
2010	March 14, 2010	November 7, 2008	March 28, 2010	October 31, 2010	

Table 3-15: Daylight saving time - examplary dates

NOTE

The following parameters will only be displayed, if Daylight saving time (parameter 4591) has been configured to "On" and the enter button has been pressed.

Z]	DST begin tin	Daylight saving time begin time 0 t	to 23 h
CL2 4594	Sommerzeit {0}	tbeginn Uhrza (1) (2)	The real-time clock will be advanced by one hour when this time is reached of DST begin date. Example: 0	on the
Z	DST	Γ begin week	Daylight saving time begin weekday we	eekday
E S	ommerzeitbe {0} {10}		THE 1.1 C .1 DOTEL 1 1 . 1 . C . 11	


© Woodward Page 115/158

E	DST begin nth. weekday	Daylight saving time begin nth weekday	weekday order no.
CL2 4592	ommerzeitbeginn x. Wochentag	The order number of the weekday for the DST begin date is co	nfigured here.
		Example: 1st DST starts on the 1 st configured weekday of the 1	DST begin month
		2nd DST starts on the 2 nd configured weekday of the	DST begin month.
		3rd DST starts on the 3 rd configured weekday of the	DST begin month.
		4th DST starts on the 4 th configured weekday of the	
		LastDST starts on the last configured weekday of the	
		LastButOne .DST starts on the last but one configured weekda begin month.	ty of the DST
		LastButTwo.DST starts on the last but two configured weekda	ay of the DST
		begin month.	
		LastButThree . DST starts on the last but three configured were	ekday of the DST
		begin month.	
H	DST begin month	Daylight saving time begin month	1 to 12
E CL2	Sommerzeitbeginn Monat {0} {1o} {2oc}	The month for the DST begin date is configured here. Example	··
4593		1	•
		1212 th month of the year.	
-	707		0 . 22 1
E E	DST end time Sommerzeitende Uhrzeit	Daylight saving time end time	0 to 23 h
CL2	{0} {1o} {1oc} {2oc}	The real-time clock will fall back by one hour when this time is	s reached on the
4597	✓ ✓ ✓ ✓	DST end date. Example:	
		0	
		2323 rd hour of the day (11 pm).	
因	DST end weekday	Daylight saving time end weekday	weekday
E CT 1	Sommerzeitende Wochentag {0} {1o} {1oc} {2oc}	The weekday for the DST end date is configured here	
CL2 4599	(S) (10) (100) (200)	The weekday for the DST end date is configured here	
S	DST end nth. weekday	Daylight saving time end nth weekday	weekday order no.
DE	Sommerzeitende x. Wochentag	TI 1 1 04 11 0 4 DOT 114	* 11
CL2 4595	{0} {1o} {1oc} {2oc}	The order number of the weekday for the DST end date is conf Example:	igured nere.
		1st DST ends on the 1 st configured weekday of the I	OST end month.
		2nd DST ends on the 2 nd configured weekday of the 1	DST end month.
		3rd DST ends on the 3 rd configured weekday of the I	OST end month.
		4thDST ends on the 4 th configured weekday of the I	
		LastDST ends on the last configured weekday of the LastButOne .DST ends on the last but one configured weekda	
		month.	y of the DST end
		LastButTwo.DST ends on the last but two configured weekda	y of the DST end
		month.	
		LastButThree . DST ends on the last but three configured wee	kday of the DST
		end month.	
Z	DST end month	Daylight saving time end month	1 to 12
E CT 1	Sommerzeitende Monat	The month for the DST end date is configured here. Example:	
CL2 4596		1	
		12	

Page 116/158 © Woodward

System: Password System

Refer to the Password section on page 23 for a detailed description of the password system.

© Woodward Page 117/158

呂		Factory	Settings	Factory settings: Factory settings CAN	YES / NO	
CL2 1703	{0}	Werksein	nstellung {2}	YESThe resetting of the factory settings via CAN bus will be enabled. NOThe resetting of the factory settings via CAN bus will not be enabled.		
				Note: This parameter is not visible in ToolKit.		
		ettings DP		Factory settings: Factory settings DPC/RS-232	YES / NO	
CL2 1704	rkseins {0} ✔	tellung DP(√	C/RS232 {2} ✓	YES The resetting of the factory settings via DPC/RS-232 will NO The resetting of the factory settings via DPC/RS-232 will enabled.		
呂		ctory Settir	0	Factory settings: Factory settings CAN	YES / NO	
CL2 1705	We n {0}	rkseinstellu {1} ✔	(2) ✓	YESThe resetting of the factory settings via CAN bus will be end to the resetting of the factory settings via CAN bus will not not the resetting of the factory settings via CAN bus will not not not setting of the factory settings via CAN bus will not not not setting of the factory settings via CAN bus will not not not not setting of the factory settings via CAN bus will not		
呂		Set defau	ılt values	Factory settings: Set default values	YES / NO	
CL2 1701	{0} ✓	Standa {1}	{2}	YESThe default values, which have been enabled with parame 1704 or parameter 1705, will be loaded by the unit. NOThe factory settings will not be loaded by the unit.	ter 1703,	
呂		Start Bo	otloader	Factory settings: Start Bootloader	00000	
CL3 10500	{0} ✓	Bootloade	er starten {2}	This function may be used to start the Bootloader. In order to do this, the code must be entered here while the unit is in the code level required for		

Note: This parameter is not visible in ToolKit.

CAUTION

The Start Bootloader function is used to flash the software and may only be used by authorized Woodward technicians!

NOTE

If the DTSC-200 parameters are read out via CAN / DPC and stored as standard values, all parameters behind parameter 1701 (Set default values) will not be overwritten when writing back the standard value file via CAN / DPC.

This prevents an unintentional start of the Bootloader or an overwriting of the time or date in the unit with a wrong (old) value. The following version information is only for info anyway and cannot be overwritten.

Page 118/158 © Woodward

System: Real-Time Clock Set

This screen shows the current date and time. The clock is implemented as real time clock. In case of a voltage supply failure an internal battery guarantees that the information is not lost. The data stand for:

XX:YY:ZZ.....hour:minute:second. AAAA-BBB-CC.....Year-month-day.

System: Adjust Clock

Adjust clock: hour

0 to 23 h

The current hour of the clock time is set here. Example: $0 ext{.......} 0^{th}$ hour of the day.

23......23th hour of the day.

Adjust clock: minute

0 to 59 min

The current minute of the clock time is set here. Example:

Adjust clock: second

0 to 59 s

The current second of the clock time is set here. Example:

Adjust clock: transfer time to clock

YES / NO

YES...... Adjusted time will be transferred to the unit.

NO...... Adjusted time will be not transferred to the unit.

System: Adjust Date

Adjust clock: day

1 to 31

Adjust clock: month

1 to 12

The current month of the date is set here. Example:

12.....12th month of the year.

Adjust clock: year

0 to 99

The current year of the date is set here. Example:

0...... Year 2000.

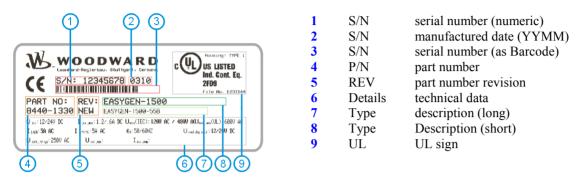
99..... Year 2099.

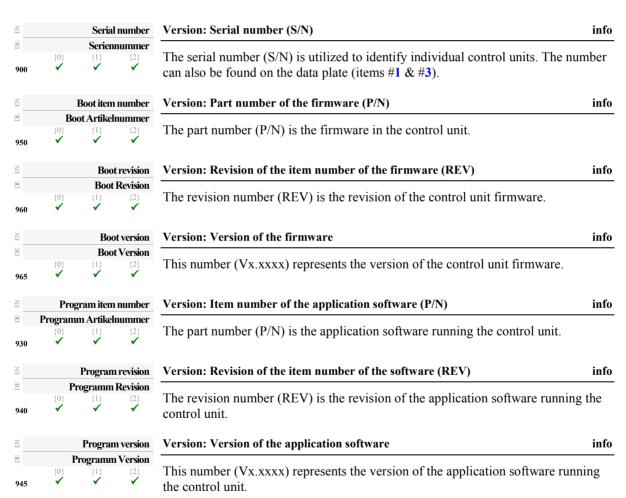
| Transfer date to clock | Datum in Uhr übernehmen | CL2 | (0) | (1) | (2) | (1699 | ✓ ✓ ✓

Adjust clock: transfer date to clock

YES / NO

YES..... Adjusted date will be transferred to the unit.


NO......Adjusted date will be not transferred to the unit.


© Woodward Page 119/158

System: Versions

The parameters in this section are informational only and cannot be modified.

The control unit may be identified from the numbers located on the unit and in the software. The most important technical information is located on the unit data plate. Technical data can be located in manual 37482.

Page 120/158 © Woodward

Appendix A. LogicsManager

The *LogicsManager* is used to customize the sequence of events in the control unit such as the start command of the engine or the operation of control unit relay outputs. For example, the start routine may be programmed so that it requires the closing of a discrete input or a preset time of day. Two independent time delays are provided for the configured action to take place and be reset. The following table shows the function of each relay in each of the application modes.

Starting the engine can be carried out externally via a discrete input. With it the *LogicsManager* is used whose conditions and programming is defined as follows.

Table 3-10 on page 98 shows the assignment of different functions to various discrete outputs.

© Woodward Page 121/158

Structure and description of the LogicsManager

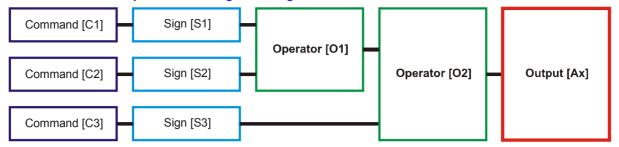


Figure 3-38: LogicsManager - function overview

- Command (variable) A list of over 100 parameters and functions is provided for the command inputs. Examples of the parameters that may be configured into these commands are Source 1 undervoltage, Start fail, and Cool down. These command variables are used to control the output function or relay. Refer to Logical Command Variables starting on page 126 for a complete list of all command variables.
- **Sign** The sign field can be used to invert the state of the command or to fix its output to a logical true or false if the command is not needed. Setting the sign to the NOT state changes the output of the command variable from true to false or vise versa.
- Operator A logical device such as AND or OR.
- (Logical) output The action or control sequence that occurs when all parameters set into the *LogicsManager* are met.

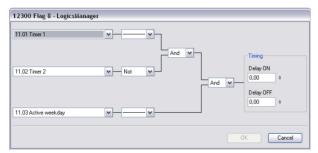
[Cx] - Command {x}	[Sx] - Sign {x}	Ox - Operator (x)	[Ax] - Output {x}
The description and the tables of all values, flags, and internal functions that are able to combine via the <i>LogicsManager</i> can be found in the Logical Command Variables section starting on page 126.	Value {[Cx] is passed 1:1. NOT Value {[Cx]} The opposite of the value [Cx] is passed. 1 color of the value [Cx] is passed. 1 [True; always "0"] The value [Cx] is ignored and this logic path will always be FALSE. """ 1 [True; always "1"] The value [Cx] is ignored and this logic path will always be TRUE. """	AND Logical AND NAND Logical negated AND OR Logical OR NOR Logical negated OR XOR Exclusive OR NXOR Exclusive negated OR (See Table 3-17 for symbols)	The description and the tables of all logical outputs, flags, and functions that are able to combine via the <i>LogicsManager</i> can be found in the Logical Outputs section starting on page 124.

Table 3-16: LogicsManager - command overview

NOTE

A logical output may either be delayed when switching on or switching off. The time starts when all logical functions of the operation have been met.

Page 122/158 © Woodward


Configuration of the chain of commands

Using the values specified in the above table, the chain of commands of the *LogicsManager* (for example: operating the relays, setting the flags, specification of the automatic functions) is configured as follows:

[Ax] = (([C1] & [S1]) & [O1] & ([C2] & [S2])) & [O2] & ([C3] & [S3])

Programming example for the *LogicsManager*:

Flag 8 shall become TRUE, whenever "Setpoint 1" is TRUE "AND" "Setpoint 2" is "NOT" TRUE "AND" the "Active week day" is TRUE ⇒

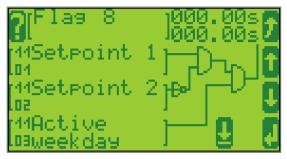


Figure 3-40: LogicsManager - display in LCD

Logical Symbols

The following symbols are used for the graphical programming of the *LogicsManager*.

		AND			OR			NANI)		NOR		1	IOX	₹		XOR	
DTSC	4	8.		4	≥1	}	-	&	þ	1	≥1	Ŷ	4-1	=	}	1	= 1	}
DIN 40 700	_			_		_	_		-				_		_	_	1	_
ASA US MIL	1 1)–	-	\triangleright) —	-)	_		> -	1)o-	1		Ť
IEC617-12		&			>=1			&	—		>=1	, J		=			= 1	$ \top$
Truth	x1	x2	у	x1	x2	у	x1	x2	у	x1	x2	у	x1	x2	у	x1	x2	у
table	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0
	0	1	0	0	1	1	0	1	1	0	1	0	0	1	0	0	1	1
	1	0	0	1	0	1	1	0	1	1	0	0	1	0	0	1	0	1
	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	0

Table 3-17: LogicsManager - logical symbols

© Woodward Page 123/158

Logical Outputs

The logical outputs or combinations may be grouped into three categories:

- internal logical flags
- Internal functions
- relay outputs

NOTE

The numbers of the logical outputs in the third column may again be used as input variable for other outputs in the *LogicsManager*.

Logical Outputs: Internal Flags

8 internal logical flags may be programmed to activate/deactivate functions. This permits more than 3 commands to be included in a logical function. The may be used as "auxiliary flags".

Name	Function	Number
Flag 1	Internal flag 1	00.01
Flag 2	Internal flag 2	00.02
Flag 3	Internal flag 3	00.03
Flag 4	Internal flag 4	00.04
Flag 5	Internal flag 5	00.05
Flag 6	Internal flag 6	00.06
Flag 7	Internal flag 7	00.07
Flag 8	Internal flag 8	80.00

Logical Outputs: Internal functions

The following logical functions may be used to activate/deactivate functions.

Name	Function	Number
External acknowledge	The alarm acknowledgement is performed from an external source (refer to parameter 12490 on page 66)	00.15

Page 124/158 © Woodward

Logical Outputs: Relay Outputs

All relays may be controlled directly by the *LogicsManager* depending on the respective application mode.

Name	Function	Number
Relay 1	If this logical output becomes true, the relay output 1 will be activated	13.01
Relay 2	If this logical output becomes true, the relay output 2 will be activated	13.02
Relay 3	If this logical output becomes true, the relay output 3 will be activated	13.03
Relay 4	If this logical output becomes true, the relay output 4 will be activated	13.04
Relay 5	If this logical output becomes true, the relay output 5 will be activated	13.05
Relay 6	If this logical output becomes true, the relay output 6 will be activated	13.06
Relay 7	If this logical output becomes true, the relay output 7 will be activated	13.07
Relay 8	If this logical output becomes true, the relay output 8 will be activated	13.08
Relay 9	If this logical output becomes true, the relay output 9 will be activated	13.09
External DO 1	If this logical output becomes true, the external relay output 1 will be activated	14.01
External DO 2	If this logical output becomes true, the external relay output 2 will be activated	14.02
External DO 3	If this logical output becomes true, the external relay output 3 will be activated	14.03
External DO 4	If this logical output becomes true, the external relay output 4 will be activated	14.04
External DO 5	If this logical output becomes true, the external relay output 5 will be activated	14.05
External DO 6	If this logical output becomes true, the external relay output 6 will be activated	14.06
External DO 7	If this logical output becomes true, the external relay output 7 will be activated	14.07
External DO 8	If this logical output becomes true, the external relay output 8 will be activated	14.08
External DO 9	If this logical output becomes true, the external relay output 9 will be activated	14.09
External DO 10	If this logical output becomes true, the external relay output 10 will be activated	14.10
External DO 11	If this logical output becomes true, the external relay output 11 will be activated	14.11
External DO 12	If this logical output becomes true, the external relay output 12 will be activated	14.12
External DO 13	If this logical output becomes true, the external relay output 13 will be activated	14.13
External DO 14	If this logical output becomes true, the external relay output 14 will be activated	14.14
External DO 15	If this logical output becomes true, the external relay output 15 will be activated	14.15
External DO 16	If this logical output becomes true, the external relay output 16 will be activated	14.16

© Woodward Page 125/158

Logical Command Variables

The logical command variables are grouped into 14 categories:

- [00.00] Internal flags
- [01.00] Alarm classes
- [03.00] Engine control
- [04.00] Operating status
- [05.00] Alarms of the engine
- [06.00] Load alarms
- [08.00] System alarms
- [09.00] Discrete inputs
- [11.00] Time functions
- [12.00] External discrete inputs
- [13.00] Internal relay output status
- [14.00] External relay outputs status
- [19.00] ATS status flags
- [20.00] ATS status flags

Logical Command Variables: [00.00] - Internal Flags

Internal flag, Logic command variables 00.01-00.20

Internal Flags are the result of the output of the logic ladders from Flag 1 to 8. Flags are internal logic that can be sent to other flags or Command variables.

No.	Name	Function	Note
00.01	Flag 1	Internal flag 1	Internal calculation; page 124
00.02	Flag 2	Internal flag 2	Internal calculation; page 124
00.03	Flag 3	Internal flag 3	Internal calculation; page 124
00.04	Flag 4	Internal flag 4	Internal calculation; page 124
00.05	Flag 5	Internal flag 5	Internal calculation; page 124
00.06	Flag 6	Internal flag 6	Internal calculation; page 124
00.07	Flag 7	Internal flag 7	Internal calculation; page 124
00.08	Flag 8	Internal flag 8	Internal calculation; page 124
00.09	-	-	not used
00.10	-	-	not used
00.11	-	-	not used
00.12	-	-	not used
00.13	-	-	not used
00.14	-	-	not used
00.15	External acknowledge	The alarm acknowledgement is performed from	Internal calculation; page 66
		an external source	
00.16	Operation mode AUTO	-	not used
00.18	-	-	not used
00.19	-	-	not used
00.20	-	-	not used

Page 126/158 © Woodward

Logical Command Variables: [01.00] - Alarm Classes

Alarm class commands, Logic command variables 01.01-01.10

Alarm classes may be configured as command variables for all logical outputs in the *LogicsManager*.

Number	Name / Function	Note
-	-	not used
01.10	Centralized alarm	TRUE as long as at least one of the alarm classes B/C/D/E/F is active

Logical Command Variables: [03.00] - Engine Control

Engine control commands, Logic command variables 03.01-03.14

These variables may be used as command variable in a logical output to set parameters for customized operations.

Number	Name / Function	Note
03.01	-	not used
03.02	-	not used
03.03	-	not used
03.04	-	not used
03.05	Horn (active)	TRUE if alarm class B to F is activated until
		the time until horn reset is expired or it is
		acknowledged for the first time.
03.06	-	not used
03.07	-	not used
03.08	-	not used
03.09	-	not used
03.10	-	not used
03.11	-	not used
03.12	-	not used
03.13	-	not used
03.14	-	not used
03.15	-	not used
03.16	-	not used
03.17	-	not used
03.18	-	not used
03.19	-	not used
03.20	-	not used

© Woodward Page 127/158

Logical Command Variables: [04.00] - Operating Status

Operating status commands, 4.01-04.15

Operating status may be used as command variables in a logical output to set parameters for customized operations.

No.	Name	Function	Note
04.01	-	-	not used
04.02	-	-	not used
04.03	-	-	not used
04.04	Lamp test	A lamp test is being performed	TRUE if the lamp test is active
04.05	Acknowledge	"Acknowledge" push button has been pressed	Note: this condition is TRUE for approx.
		or an external acknowledgment via	40 ms and must be extended utilizing a delay
		LogicsManager	time
04.06	-	-	not used
04.07	-	-	not used
04.08	-	-	not used
04.09	-	-	not used
04.10	-	-	not used
04.11	-	-	not used
04.12	-	-	not used
04.13	-	-	not used
04.14	Remote acknowledge	Request over remote control to acknowledge	TRUE if the acknowledgement bit is set
04.15	-	-	not used
04.16	-	-	not used
04.17	-	-	not used
04.18	-	-	not used
04.19	-	-	not used
04.20	-	-	not used

Logical Command Variables: [06.00] - Load Alarms

Load alarm status commands, 06.01-06.15

These engine alarms may be used as command variables in a logical output to set parameters for customized operations.

Number	Name / Function	Note
06.01	-	not used
06.02	-	not used
06.03	-	not used
06.04	-	not used
06.05	-	not used
06.06	-	not used
06.07	-	not used
06.08	-	not used
06.09	Overcurrent 1	
06.10	Overcurrent 2	
06.11	Overcurrent 3	
06.12	-	not used
06.13	-	not used
06.14	Overload 1	
06.15	Overload 2	
06.16	-	not used
06.17	-	not used
06.18	-	not used
06.19	-	not used
06.20	-	not used

Page 128/158 © Woodward

Logical Command Variables: [08.00] - System Alarms

System alarms status commands, 08.01-08.10

These system alarms may be used as command variables in a logical output n to set parameters for customized operations.

Number	Function	Note		
08.01	Battery overvoltage (limit) 1			
08.02	Battery overvoltage (limit) 2			
08.03	Battery undervoltage (limit) 1			
08.04	Battery undervoltage (limit) 2	TRUE = limit value reached		
08.05	-	FALSE = alarm acknowledged		
08.06	-	TALSE – didilii dekilowiedged		
08.07	-			
08.08	-			
08.09	CANopen fault]		
08.10	-	not used		
08.11	-	not used		
08.12	-	not used		
08.13	-	not used		
08.14	-	not used		
08.15	-	not used		
08.16	-	not used		
08.17	-	not used		
08.18	-	not used		
08.19	-	not used		
08.20	-	not used		

Logical Command Variables: [09.00] - Discrete Inputs

Control discrete input commands, 09.01-09.08

The discrete inputs may be used as command variables in a logical output to set parameters for customized operations.

Number	Function	Note
09.01	DI 1 (Discrete input [D1])	
09.02	DI 2 (Discrete input [D2])	
09.03	DI 3 (Discrete input [D3])	
09.04	DI 4 (Discrete input [D4])	TRUE = logical "1" (delay times and NO/NC
09.05	DI 5 (Discrete input [D5])	parameters are ignored)
09.06	DI 6 (Discrete input [D6])	FALSE = logical "0" (alarm has been
09.07	DI 7 (Discrete input [D7])	acknowledged or immediately after TRUE
09.08	DI 8 (Discrete input [D8])	condition is no longer present, if the Control
09.09	DI 9 (Discrete input [D9])	is configured as alarm class)
09.10	DI 10 (Discrete input [D10])	
09.11	DI 11 (Discrete input [D11])	
09.12	DI 12 (Discrete input [D12])	
09.13	-	not used
09.14	-	not used
09.15	-	not used
09.16	-	not used
09.17	-	not used
09.18	-	not used
09.19	-	not used
09.20	-	not used

© Woodward Page 129/158

Logical Command Variables: [11.00] - Time Functions

Time function commands, 11.01-11.10

Time functions may be used as command variables in a logical output.

Number	Name / Function	Note
11.01	Timer 1 (exceeded)	see page 103
11.02	Timer 2 (exceeded)	see page 103
11.03	Active weekday (equal to setting)	see page 103
11.04	Active day (equal to setting)	see page 103
11.05	Active hour (equal to setting)	see page 103
11.06	Active minute (equal to setting)	see page 103
11.07	Active second (equal to setting)	see page 103
11.08	-	not used
11.09	-	not used
11.10	-	not used
11.11	-	not used
11.12	-	not used
11.13	-	not used
11.14	-	not used
11.15	-	not used
11.16	-	not used
11.17	-	not used
11.18	-	not used
11.19	-	not used
11.20	-	not used

Logical Command Variables: [12.00] - External Discrete Inputs (Expansion Board)

External discrete input commands, 12.01-12.16

Additional discrete inputs from an expansion board (i.e. IKD 1 extension board) may be used as command variables in a logical output.

Number	Name / Function	Note
12.01	External discrete input 1 [D.E01]	
12.02	External discrete input 2 [D.E02]	
12.03	External discrete input 3 [D.E03]	
12.04	External discrete input 4 [D.E04]	
12.05	External discrete input 5 [D.E05]	
12.06	External discrete input 6 [D.E06]	TRUE = logical "1" (delay times and NO/NC
12.07	External discrete input 7 [D.E07]	parameters are ignored)
12.08	External discrete input 8 [D.E08]	FALSE = logical "0" (alarm has been
12.09	External discrete input 9 [D.E09]	acknowledged, or immediately after TRUE
12.10	External discrete input 10 [D.E10]	condition is no longer present, if the Control is
12.11	External discrete input 11 [D.E11]	configured as alarm class)
12.12	External discrete input 12 [D.E12]	
12.13	External discrete input 13 [D.E13]	
12.14	External discrete input 14 [D.E14]	
12.15	External discrete input 15 [D.E15]	
12.16	External discrete input 16 [D.E16]	
12.17	-	not used
12.18	-	not used
12.19	-	not used
12.20	-	not used

Page 130/158 © Woodward

Logical Command Variables: [13.00] - Internal Relay Output Status

Discrete output commands, 13.01-13.08

The discrete outputs may be used as command variables in a logical output.

Number	Name / Function	Note
13.01	Discrete output DO1 [R01]	
13.02	Discrete output DO2 [R02]	
13.03	Discrete output DO3 [R03]	TDITE — la sical #1# (4his can dition in dicates
13.04	Discrete output DO4 [R04]	TRUE = logical "1" (this condition indicates the logical status of the internal relays)
13.05	Discrete output DO5 [R05]	FALSE = logical "0" (this condition indicates
13.06	Discrete output DO6 [R06]	the logical status of the internal relays)
13.07	Discrete output DO7 [R07]	life logical status of the internal relays)
13.08	Discrete output DO8 [R08]	
13.09	Discrete output DO9 [R09]	
13.10	-	not used
13.11	-	not used
13.12	-	not used
13.13	-	not used
13.14	-	not used
13.15	-	not used
13.16	-	not used
13.17	-	not used
13.18	-	not used
13.19	-	not used
13.20	-	not used

Logical Command Variables: [14.00] - External Relay Outputs Status

Discrete output commands, 14.01-14.16

The external discrete outputs may be used as command variables in a logical output.

Number	Name / Function	Note
14.01	External discrete output DO1 [R01]	
14.02	External discrete output DO2 [R02]	
14.03	External discrete output DO3 [R03]	
14.04	External discrete output DO4 [R04]	
14.05	External discrete output DO5 [R05]	
14.06	External discrete output DO6 [R06]	TRUE = logical "1" (this condition indicates
14.07	External discrete output DO7 [R07]	the logical status of the relays, which are
14.08	External discrete output DO8 [R08]	connected via external expansion boards)
14.09	External discrete output DO9 [R09]	FALSE = logical "0" (this condition indicates
14.10	External discrete output DO10 [R10]	the logical status of the relays, which are
14.11	External discrete output DO11 [R11]	connected via external expansion boards)
14.12	External discrete output DO12 [R12]	
14.13	External discrete output DO13 [R13]	
14.14	External discrete output DO14 [R14]	
14.15	External discrete output DO15 [R15]	
14.16	External discrete output DO16 [R16]	
14.17	-	not used
14.18	-	not used
14.19	-	not used
14.20	-	not used

© Woodward Page 131/158

Logical Command Variables: [19.00] - ATS Status Flags

ATS status flags, 19.01-19.20

The external discrete outputs may be used as command variables in a logical output.

No.	Name / Function	Note
19.01	Source 1 OK (voltage and frequency are in range)	
19.02	Source 1 voltage OK (in range)	
19.03	Source 1 overvoltage ("fail" level exceeded)	
19.04	Source 1 undervoltage ("fail" level exceeded)	
19.05	Source 1 frequency OK (in range)	
19.06	Source 1 overfrequency ("fail" level exceeded)	
19.07	Source 1 underfrequency ("fail" level exceeded)	
19.08	Source 1 voltage imbalance ("fail" level exceeded)	
19.09	Source 1 rotation (field =) CCW	
19.10	Source 1 rotation (field =) CW	
19.11	Source 2 OK (voltage and frequency are in range)	
19.12	Source 2 voltage OK (in range)	
19.13	Source 2 overvoltage ("fail" level exceeded)	
19.14	Source 2 undervoltage ("fail" level exceeded)	
19.15	Source 2 frequency OK (in range)	
19.16	Source 2 overfrequency ("fail" level exceeded)	
19.17	Source 2 underfrequency ("fail" level exceeded)	
19.18	Source 2 voltage imbalance ("fail" level exceeded)	
19.19	Source 2 rotation (field =) CCW	
19.20	Source 2 rotation (field =) CW	
19.21	S1 failed status	
19.22	S2 failed status	

Logical Command Variables: [20.00] - ATS Status Flags

ATS status flags, 20.01-20.22

The external discrete outputs may be used as command variables in a logical output.

No.	Name / Function	Note
		Note
20.01	Status Flag: Elevator Pre Signal (is active)	
20.02	Status Flag: Motor Load Disconnect (signal is active)	
20.03	Status Flag: Load Test (is) active	
20.04	Status Flag: No Load Test (is) active	
20.05	Status Flag: S1 start signal	
20.06	Status Flag: S2 start signal	
20.07	Command: Close to S1	
20.08	Command: Open from S1	
20.09	Command: Close to S2	
20.10	Command: Open from S2	
20.11	Status Flag: Load shed (is active)	
20.12	Status Flag: Shunt trip enable (is active)	
20.13	Status Flag: S1 closed	TRUE if S1 is closed and S2 is open
20.14	Status Flag: S2 closed	TRUE if S2 is closed and S1 is open
20.15	Status Flag: S1 and S2 open	
20.16	Status Flag: S1 and S2 closed	
20.17	Status Flag: S1 is stabling (at the moment)	
20.18	Status Flag: S2 is stabling (at the moment)	
20.19	Status Flag: Dis. Ext. Sw. Inter. (disable external interlock)	
20.20	Status Flag: Timer exe. Load Test	Load test has automatically been triggered by
	_	exercise timer
20.21	Status Flag: Timer exe. No Load	No load test has automatically been triggered by
	_	exercise timer
20.22	Sync check active	This flag is set as soon as the DTSC-200 starts to do
		In-phase monitoring, and resets after the In-Phase
		transfer to the other source has been accomplished.

Page 132/158 © Woodward

Logical Command Variables: [21.00] - ATS Alarms

ATS alarms, 21.01-21.20

The external discrete outputs may be used as command variables in a logical output.

No.	Name / Function	Note
21.01	Engine Alarm: Start fail S1	
21.02	Engine Alarm: Start fail S2	
21.03	Engine Alarm: Unintended Stop S1	
21.04	Engine Alarm: Unintended Stop S2	
21.05	Alarm: S1 phase rotation mismatch (failure present)	
21.06	Alarm: S2 phase rotation mismatch (failure present)	
21.07	Switch alarm: Fail to open (from switch position) S1	
21.08	Switch alarm: Fail to open (from switch position) S2	
21.09	Switch alarm: Fail to close (to switch position) S1	
21.10	Switch alarm: Fail to close (to switch position) S2	
21.11	Switch alarm: Mechanical fail (not plausible limit switch	
	feedbacks have been detected by the DTSC-200)	
21.12	In-Phase monitor alarm: In-phase timeout (the system was not	
	able to establish a "Sync" situation within the configured time)	
21.13	Switch alarm: Overlap timeout (the contacts have been in a	
	"parallel" position for longer than the configured time)	
21.14	Switch alarm: Out of phase XFR-Status	
21.15	-	not used
21.16	-	not used
21.17	-	not used
21.18	-	not used
21.19	-	not used
21.20	-	not used

Logical Command Variables: [98.00] - LogicsManager Outputs

LogicsManager outputs, 98.01-98.20

The external discrete outputs may be used as command variables in a logical output.

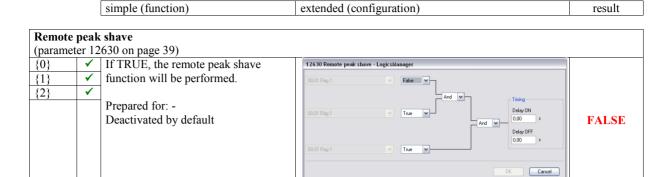
No.	Name / Function	Note
98.01	LogicsManager "Inhibit ATS" is TRUE	
98.02	LogicsManager "Inhib. XFR to S1" is TRUE	
98.03	LogicsManager "Inhib. XFR to S2" is TRUE	
98.04	LogicsManager "Remote peak shave" is TRUE	
98.05	<i>LogicsManager</i> "Interruptible power rate provisions" is TRUE	
98.06	LogicsManager "Gen-Gen enable" is TRUE	
98.07	LogicsManager "Delayed mode activation" is TRUE	
98.08	LogicsManager "Extended parallel time" is TRUE	
98.09	LogicsManager "Load Test" is TRUE	
98.10	LogicsManager "No Load Test" is TRUE	
98.11	LogicsManager "Source 1 priority" is TRUE	
98.12	LogicsManager "Source 2 priority" is TRUE	
98.13	LogicsManager "External bypass" is TRUE	
98.14	LogicsManager "Load shed" is TRUE	
98.15	LogicsManager "Cld tr. enable" is TRUE (enable closed	
	transition)	
98.16	LogicsManager "Service disconnect" is TRUE	
98.17	-	not used
98.18	-	not used
98.19	-	not used
98.20	-	not used

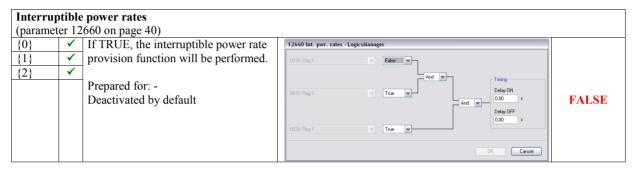
© Woodward Page 133/158

Factory Setting

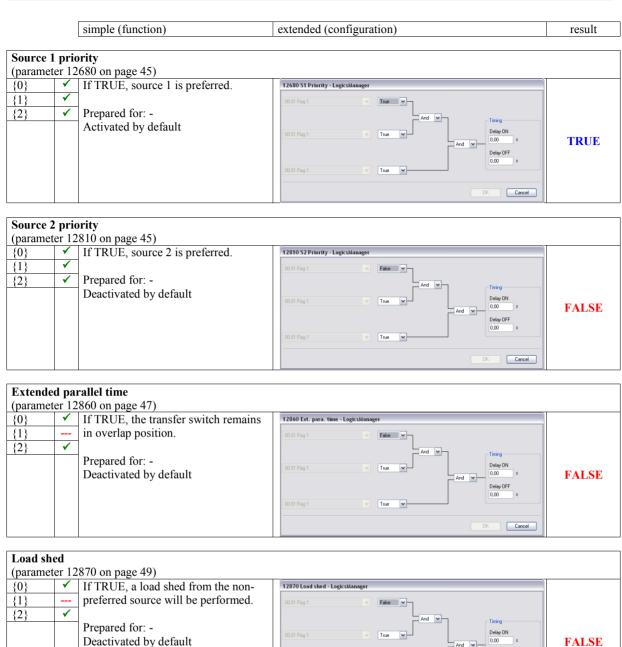
The inputs, outputs, and internal flags, which may be programmed via the *LogicsManager*, have the following factory default settings when delivered:

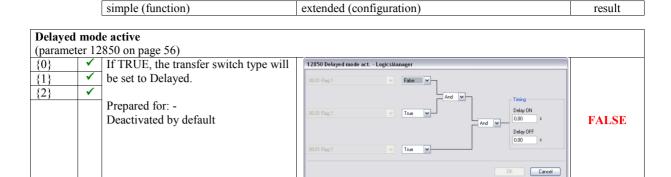
sin	nple (function	extended (configuration)	result
-----	----------------	--------------------------	--------


Factory Setting: Functions



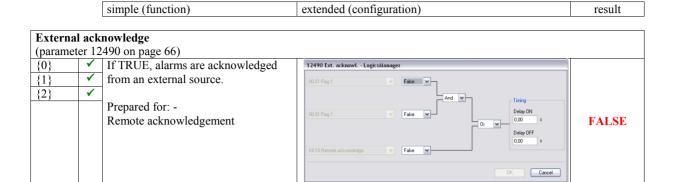
Page 134/158 © Woodward

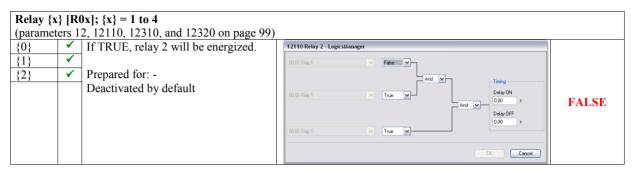


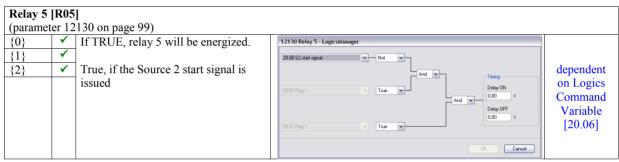


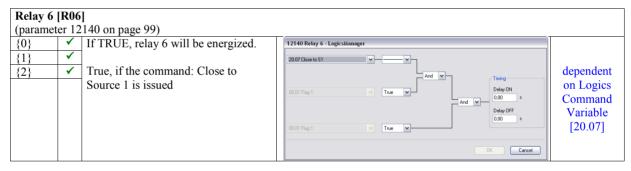
© Woodward Page 135/158

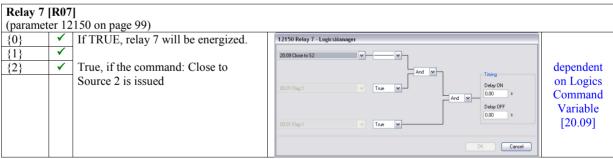
Page 136/158 © Woodward


True v

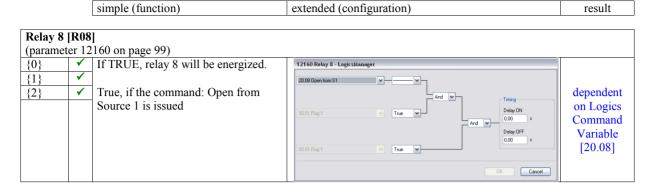

© Woodward Page 137/158

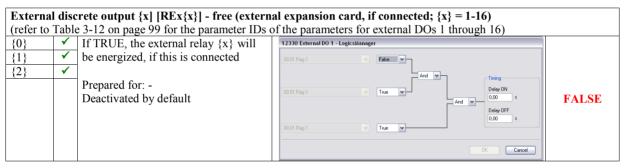



Page 138/158 © Woodward

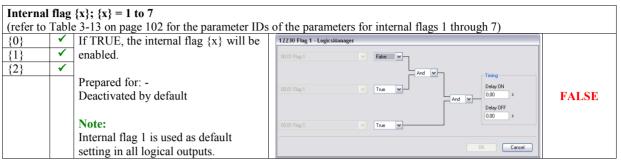

simple (function)	extended (configuration)	result

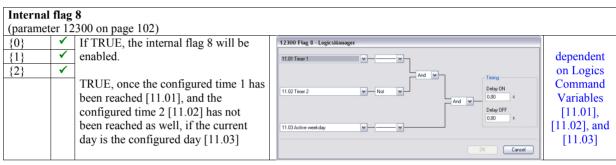
Factory Setting: Relay Outputs





© Woodward Page 139/158





Page 140/158 © Woodward

simple (function) extended (configuration) result

Factory Setting: Internal Flags

© Woodward Page 141/158

Discrete Inputs

[D1]		
L J	{0}	
	{1}	Reply from ATS switch: Breaker in source 1 position
		Reply from A15 switch. Breaker in source 1 position
	{2}	
[D2]	{0}	
[]	()	Poply from ATS guitable Proglar in gauges 2 position
	{1}	Reply from ATS switch: Breaker in source 2 position
	{2}	
[D3]	{0}	
[D3]		
	{1}	Reply from ATS switch: Breaker in source 1 open position
	{2}	
	1 ()	
FD 43	(0)	
[D4]	{0}	
	{1}	Reply from ATS switch: Breaker in source 2 open position
	{2}	7 * *
	123	
[D5]	{0}	
	{1}	freely configurable discrete input (pre-configured to Inhibit ATS)
		neerly configurable discrete input (pre-configured to filmble 7115)
	{2}	
[D6]	{0}	
	{1}	freely configurable discrete input (unassigned)
	{2}	
[D7]	(0)	
[D7]	{0}	4
	{1}	freely configurable discrete input (unassigned)
	{2}	
	(-)	
	T	
[D8]	{0}	
	{1}	freely configurable discrete input (unassigned)
		1100) Comiguitation input (unassigness)
	{2}	
[D9]	{0}	
	{1}	freely configurable discrete input (unassigned)
1		neery configurable discrete input (unassigned)
	{2}	
	(0)	
[D10]	1303	
[D10]	{0}	finally and annual discounts insult (many)
[D10]	{1}	freely configurable discrete input (unassigned)
[D10]		freely configurable discrete input (unassigned)
[D10]	{1}	freely configurable discrete input (unassigned)
	{1} {2}	freely configurable discrete input (unassigned)
[D10]	{1} {2} {0}	
	{1} {2}	freely configurable discrete input (unassigned) freely configurable discrete input (unassigned)
	{1} {2} {0} {1}	
	{1} {2} {0}	
[D11]	{1} {2} {0} {1} {2}	
	{1} {2} {0} {1} {2}	freely configurable discrete input (unassigned)
[D11]	{1} {2} {0} {1} {2}	freely configurable discrete input (unassigned)
[D11]	{1} {2} {0} {1} {2}	

NOTE

The discrete inputs for the breaker position reply messages (DIs 1 through 4) are fixed to N.C. and are evaluated as N.C., i.e. the breaker is considered as "in position" if the respective DI is de-energized.

Page 142/158 © Woodward

Appendix B. List Of Parameters

Unit nı	umber P/	N	Rev							
Versio	n D	DTSC								
Project	t _									
Serial	number S/	S/N Date								
Par. ID.	Parameter		Setting range	Default value	Customer setting		Data type			
MAIN	NMENU						-			
WAIN	Language		English / Deutsch / Espacñol / Polski / Russian	English			UNSIGNED 16			
10416	Password		0000 to 9999				UNSIGNED 16			
FUEN	NT LOG									
	Clear event log		YES / NO	NO	\square Y \square N	\square Y \square N	UNSIGNED 16			
1700	Ciour Cyone log		1257110	1,0	1 - 1 - 1		CHOIGHED TO			
MEAS	SUREMENT									
1750	Rated system frequency		50/60 Hz	50 Hz			UNSIGNED 16			
1774	Rated voltage S1		50 to 650000 V	400 V			UNSIGNED 32			
1772	Rated voltage S2		50 to 650000 V	400 V			UNSIGNED 32			
1862	S1 voltage measuring		3Ph 4W 3Ph 3W 1Ph 2W 1Ph 3W	3Ph 4W	☐ 3Ph4W ☐ 3Ph3W ☐ 1Ph2W ☐ 1Ph3W	☐ 3Ph4W ☐ 3Ph3W ☐ 1Ph2W ☐ 1Ph3W	unsigned 16			
1861	S2 voltage measuring		3Ph 4W 3Ph 3W 1Ph 2W 1Ph 3W	3Ph 4W	☐ 3Ph4W ☐ 3Ph3W ☐ 1Ph2W ☐ 1Ph3W	☐ 3Ph4W ☐ 3Ph3W ☐ 1Ph2W ☐ 1Ph3W	unsigned 16			
1858	1Ph2W voltage measuri	ng	Phase - N Ph - Ph	Ph - Ph	□ p-n □ p-p	□ p-n □ p-p	UNSIGNED 16			
1859	1Ph2W phase rotation		CW / CCW	CW	□ CW □ CCW	□ CW □ CCW	UNSIGNED 16			
1863	S1 Load current measur	ing	L1 L2 L3 Phase L1 Phase L2 Phase L3	L1 L2 L3	☐ L123 ☐ Ph.L1 ☐ Ph.L2 ☐ Ph.L3	☐ L123 ☐ Ph.L1 ☐ Ph.L2 ☐ Ph.L3	unsigned 16			
1860	S2 Load current measur		L1 L2 L3 Phase L1 Phase L2 Phase L3	L1 L2 L3	☐ L123 ☐ Ph.L1 ☐ Ph.L2 ☐ Ph.L3	☐ L123 ☐ Ph.L1 ☐ Ph.L2 ☐ Ph.L3	unsigned 16			
	Rated active power [kW]	0.5 to 99999.9 kW	200.0 kW			UNSIGNED 32			
1754	Rated current		5 to 32000 A	300 A	1		UNSIGNED 16			
	Transformer									
1819	S1 voltage transf. prima	-	50 to 650000 V	400 V			UNSIGNED 32			
1818	S1 voltage transf. second		50 to 480 V	400 V	1		UNSIGNED 16			
1816	S2 voltage transf. prima		50 to 650000 V	400 V			UNSIGNED 32			
1815	S2 voltage transf. second		50 to 480 V	400 V			UNSIGNED 16			
1821	Load current transforme		1 to 32000/5 A 1 to 32000/1 A	500/5 A 500/1 A			UNSIGNED 16			
1822	Load current transforme	1	1 to 32000/1 A	300/1 A	1		UNSIGNED 16			

Page 143/158 © Woodward

UNSIGNED 16

Par. ID.	Parameter	Setting range	Default value	Customer setting		Data type		
APPL	ICATION							
4148	Application mode	Util-Gen Gen-Gen Util-Util	Util-Gen	☐ Util-Gen☐ Gen-Gen☐ Util-Util	☐ Util-Gen☐ Gen-Gen☐ Util-Util	unsigned 16		
4146	Transfer Commit	YES / NO	NO	$\square Y \square N$	$\square Y \square N$	UNSIGNED 16		
4149	S1 start delay time	0 to 300 s	10 s			UNSIGNED 16		
3330	S2 start delay time	0 to 300 s	10 s			UNSIGNED 16		
3333	S1 source stable time	1 to 6500 s	10 s			UNSIGNED 16		
3332	S2 source stable time	1 to 6500 s	10 s			UNSIGNED 16		
2804	S1 outage delay	0.1 to 10.0 s	1.0 s			UNSIGNED 16		
2803	S2 outage delay	0.1 to 10.0 s	1.0 s			UNSIGNED 16		
3343	S1 cooldown time	1 to 6500 s	20 s			Unsigned 16		
3344	S2 cooldown time	1 to 6500 s	20 s			UNSIGNED 16		
4496	Transfer delay timer S1->S2	0 to 6500	5			UNSIGNED 16		
4497	Transfer delay timer S2->S1	0 to 6500	5			UNSIGNED 16 Logman		
12600								
12610	Inhib. XFR to S1	see descr. in LogicsManager				Logman		
12620	Inhib. XFR to S2	see descr. in LogicsManager				Logman		
12630	Remote peak shave	see descr. in LogicsManager				Logman		
12660	Int. pow. rates					Logman		
12820	Ext. bypass	see descr. in LogicsManager				Logman		
12830	Gen-Gen enable	see descr. in LogicsManager	chap. starting page	134; default: (0	& 1) & 1	Logman		
	Elevator Pre Signal							
4490	Elevator Pre signal	ON / OFF	OFF		\Box 1 \Box 0	UNSIGNED 16		
4491	Elevator pre-signal duration	1 to 6500 s	5 s			UNSIGNED 16		
	Motor Load Disconnect							
4550	Motor Load Disconnect	ON / OFF	OFF			UNSIGNED 16		
		S1->S2		□ S1->S2	□ S1->S2			
4553	Active direction	S2->S1	S1->S2	□ S2->S1	□ S2->S1	UNSIGNED 16		
	7: 4: 61	Both	_	☐ Both	☐ Both	1.0		
4551	Disconnect time S1->S2	1 to 6500 s	5 s			UNSIGNED 16		
4552	Disconnect time S2->S1	1 to 6500 s	5 s			UNSIGNED 16		
	Source Priority					Logman		
12680	S1 Priority	see descr. in <i>LogicsManager</i> chap. starting page 134; default: (1 & 1) & 1						
12810	S2 Priority	see descr. in <i>LogicsManager</i> chap. starting page 134; default: (0 & 1) & 1				Logman		
12860	Ext. para.time	see descr. in <i>LogicsManager</i> chap. starting page 134; default: (0 & 1) & 1				Logman		
12870	Load shed see descr. in <i>LogicsManager</i> chap. starting page 134; default: (0 & 1) & 1 Service Disconnect see descr. in <i>LogicsManager</i> chap. starting page 134; default: (0 & 1) & 1			Logman				
12890	Service Disconnect	see descr. in LogicsManager	chap, starting page	134; default: (0	& 1) & 1	Logman		
BREA	KED							
DKLA	KEK	Standard		□ Standard	□ Standard			
2424	Transfar switch type		Standard	☐ Standard	☐ Standard	INCIONED 16		
3424	Transfer switch type	Delayed Closed	Standard	☐ Delayed ☐ Closed	☐ Delayed ☐ Closed	UNSIGNED 16		
3434	Use limit sw. OPEN replies	YES / NO	YES			UNSIGNED 16		
12850	Delayed mode act.	see descr. in <i>LogicsManager</i>				Logman		
3426	Neutral time S2->S1	1 to 6500 s	3 s	134, uciauii. (0	\(\alpha\) \(\alpha\)	UNSIGNED 16		
3425	Neutral time S1->S2	1 to 6500 s	3 s			UNSIGNED 16		
3428	Limit switch reply timeout	0.1 to 99.9 s	1.0 s			UNSIGNED 16		
3429	Wait time until next XFR attempt	0.1 to 99.9 s	3.0 s			UNSIGNED 16		
3429	Max. of transfer attempts	0.1 to 99.9 s	2			UNSIGNED 16		
3-14/	mux. of transfer attempts	0 10 10		1	<u> </u>	ONSIGNED 10		
TEST	MODES							
12640		see descr. in LogicsManager	chan starting nage	134: default: (0	& 1) & 1	Logman		
12650		see descr. in LogicsManager				Logman		
12030	110 LOGG TOST	see deser. In Logicsmanager	chap, starting page	ı ⊅- ı , ucıauıı. (U	w 1) w 1	Loginan		

DTSC-200 - ATS Controller

Page 144/158 © Woodward

NONTFORMS	Par. ID.	Parameter	Setting range	Default value	Custom	er setting	Data type
Time until horn reset	MONI	ITORING					
External acknowledge			0 to 1000 s	180 s			UNSIGNED 16
SI Monitoring SI Nonitoring SI Nonitoring SI Nonitoring SI October SI Octo	12490	External acknowledge	see descr. in LogicsManage	r chap. starting page	134; default: (0	& 0)+0	Logman
1787 Voltage monitoring S1	3430	Limit switch monitoring	ON / OFF	OFF			UNSIGNED 16
4448 St.							
4445 St.					$\square 3 \square 4$	□3 □4	
4453 SI underfrequency menitoring							
STATE STAT		<u> </u>			5 150	5 .50	
	-						
4455 Street/Vallage restore							
STO overvoltage restore						ПІПО	
4458 SI overfrequency monitoring					D1 D0	0100	
SI overfrequency restore							
Addition SI voltage imbalance monitoring	4459			102.0 %			
St. volt. imbalance restore	4460	S1 overfrequency fail	50.0 to 130.0 %	105.0 %			UNSIGNED 16
Add Delay	4461						
Delay							UNSIGNED 16
SI phase rotation							UNSIGNED V
Standard Standard							
S1 phase rotation	4562	S1 phase rotation		ON			UNSIGNED 16
1786	4563	S1 phase rotation		CW			UNSIGNED 16
4466 S2 undervoltage fail 50.0 to 125.0 % 80.0 % UNSIGNED 16			T	1			ı
4466 S2 underfrequency monitoring					□3 □4	□3 □4	
4467 S2 underfrequency monitoring							
4468 S2 underfrequency restore 50.0 to 130.0 % 95.0 % UNSIGNED 16							
4469 S2 underfrequency fail S0.0 to 130.0 % 90.0 % UNSIGNED 16							
4470 S2 overvoltage monitoring ON / OFF ON □ 1 □ 0 □ 1 □ 0 UNSIGNED 16							
4471 S2 overvoltage restore 50.0 to 125.0 % 105.					П1П0	П1П0	
4472 S2 overroltage fail 50.0 to 125.0 % 110.0 % UNSIGNED 16							
4473 S2 overfrequency monitoring							
4475 S2 overfrequency fail 50.0 to 130.0 % 105.0 %	4473						UNSIGNED 16
4476 S2 voltage imbalance monitoring ON / OFF ON	4474	S2 overfrequency restore	50.0 to 130.0 %	102.0 %			UNSIGNED 16
4477 S2 volt. imbalance restore 0.5 to 99.9 % 8.0 % UNSIGNED 16	4475	S2 overfrequency fail					UNSIGNED 16
4478 S2 volt. imbalance fail 0.5 to 99.9 % 10.0 % UNSIGNED 16	4476						UNSIGNED 16
Delay Delay ed Delay e							
4566 S2 phase rotation ON / OFF ON □ 1 □ 0 □ 1 □ 0 UNSIGNED 16							
CW					5 150	5 .50	
In-Phase Monitoring In-Phase monitor ON / OFF OFF □ 1 □ 0 □ 1 □ 0 UNSIGNED 16	4566	S2 phase rotation		ON			UNSIGNED 16
In-Phase monitor	4567	1		CW			UNSIGNED 16
8820 Connect synchronous mains ON / OFF OFF UNSIGNED 16 8821 Max. phase angle 0 to 20° 2 UNSIGNED 16 4585 In-Phase check for DLY trans. ON / OFF OFF □ 1 □ 0 □ 1 □ 0 UNSIGNED 16 4571 Voltage window 0.50 to 20.00 % 1.00 % UNSIGNED 16 4572 Positive frequency window 0.02 to 0.49 Hz 0.18 Hz SIGNED 16 4573 Negative frequency window -0.02 to -0.49 Hz -0.18 Hz SIGNED 16 4574 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed Abort Delayed □ Delayed UNSIGNED 16	4		ON / OFF	OPP			
8821 Max. phase angle 0 to 20° 2 UNSIGNED 16 4585 In-Phase check for DLY trans. ON / OFF OFF □ 1 □ 0 UNSIGNED 16 4571 Voltage window 0.50 to 20.00 % 1.00 % UNSIGNED 16 4572 Positive frequency window 0.02 to 0.49 Hz 0.18 Hz SIGNED 16 4573 Negative frequency window -0.02 to -0.49 Hz -0.18 Hz SIGNED 16 4574 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed Delayed UNSIGNED 16							
4585 In-Phase check for DLY trans. ON / OFF OFF □ 1 □ 0 □ 1 □ 0 UNSIGNED 16 4571 Voltage window 0.50 to 20.00 % 1.00 % UNSIGNED 16 4572 Positive frequency window 0.02 to 0.49 Hz 0.18 Hz SIGNED 16 4573 Negative frequency window -0.02 to -0.49 Hz -0.18 Hz SIGNED 16 4577 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed Delayed UNSIGNED 16							
4571 Voltage window 0.50 to 20.00 % 1.00 % UNSIGNED 16 4572 Positive frequency window 0.02 to 0.49 Hz 0.18 Hz SIGNED 16 4573 Negative frequency window -0.02 to -0.49 Hz -0.18 Hz SIGNED 16 4577 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed Delayed UNSIGNED 16							
4572 Positive frequency window 0.02 to 0.49 Hz 0.18 Hz SIGNED 16 4573 Negative frequency window -0.02 to -0.49 Hz -0.18 Hz SIGNED 16 4577 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed Abort Delayed Delayed UNSIGNED 16							
4573 Negative frequency window -0.02 to -0.49 Hz -0.18 Hz SIGNED 16 4577 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed □ Abort □ Delayed □ Delayed							
4577 Max. overlap time 0.1 to 9.99 s 0.10 s (see page 81) UNSIGNED 16 4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed □ Abort □ Delayed □ Delayed							
4578 Open trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed □ Abort □ Delayed □ Delayed				0.10 s			
4583 Closed trans. switch reac. time 15 to 300 ms 30 ms UNSIGNED 16 4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed □ Abort □ Delayed □ Delayed UNSIGNED 16	4578	Open trans. switch reac. time	15 to 300 ms				UNSIGNED 16
4581 Vector group angle adjustment -180° to 180° 0° SIGNED 16 4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort Delayed □ Abort □ Delayed UNSIGNED 16							
4576 In-phase timeout after 0 to 6500 s 60 s UNSIGNED 16 4582 Outcome on In-phase timeout Abort Delayed Abort □ Delayed □ Delayed UNSIGNED 16							
4582 Outcome on In-phase timeout Delayed Delayed Delayed Delayed UNSIGNED 16		In-phase timeout after		60 s			UNSIGNED 16
		Outcome on In-phase timeout		Abort			UNSIGNED 16
	4584	Ext. permit for cld. trans.		OFF			UNSIGNED 16

© Woodward Page 145/158

Par. ID.	Parameter	Setting range	Default value	Custom	er setting	Data type
MONI	ITORING					
	Load Monitoring					
	Overcurrent Monitoring level 1					
2200	Monitoring	ON / OFF	ON			UNSIGNED 16
2204	Limit	50.0 to 300.0 %	110.0 %			UNSIGNED 16
2205	Delay	0.02 to 99.99 s	30.00 s			UNSIGNED 16
2202	Self acknowledge	YES / NO	NO	$\square Y \square N$		UNSIGNED 16
	Overcurrent Monitoring level 2					
2206	Monitoring	ON / OFF	ON			UNSIGNED 16
2210	Limit	50.0 to 300.0 %	150.0 %			UNSIGNED 16
2211	Delay	0.02 to 99.99 s	1.00 s			UNSIGNED 16
2208	Self acknowledge	YES / NO	NO			unsigned 16
	Overcurrent Monitoring level 3					
2212	Monitoring	ON / OFF	ON			Unsigned 16
2216	Limit	50.0 to 300.0 %	250.0 %		<u> </u>	UNSIGNED 16
2217	Delay	0.02 to 99.99 s	0.40 s			UNSIGNED 16
2214	Self acknowledge	YES / NO	NO		$\square Y \square N$	unsigned 16
	Overload Monitoring level 1			T		
2300	Monitoring	ON / OFF	ON			UNSIGNED 16
2304	Limit	50.0 to 300.0 %	110.0 %			UNSIGNED 16
2305	Delay	0.02 to 99.99 s	11.00 s	<u> </u>	<u> </u>	UNSIGNED 16
2302	Self acknowledge	YES / NO	NO			UNSIGNED 16
	Overload Monitoring level 2					
2306	Monitoring	ON / OFF	ON			unsigned 16
2310	Limit	50.0 to 300.0 %	120.0 %			UNSIGNED 16
2311	Delay	0.02 to 99.99 s	0.10 s			UNSIGNED 16
2308	Self acknowledge	YES / NO	NO	$\square Y \square N$		UNSIGNED 16
	Engine Monitoring					
	Start Failure S1 Monitoring					
3341	S1 Start fail delay time	1 to 6500 s	8 s			unsigned 16
	Start Failure S2 Monitoring					
3331	S2 Start fail delay time	1 to 6500 s	8 s			UNSIGNED 16
	Battery Voltage Monitoring					
	Overvoltage Monitoring level 1	037./.077				
3450	Monitoring	ON / OFF	ON			UNSIGNED 16
3454	Limit	8.0 to 42.0 V	32.0 V		<u> </u>	UNSIGNED 16
3455	Delay	0.02 to 99.99 s	5.00 s			UNSIGNED 16
3452	Self acknowledge level 1	YES / NO	NO	$\square Y \square N$	\square Y \square N	unsigned 16
	Overvoltage Monitoring level 2					
3456	Monitoring	ON / OFF	OFF			unsigned 16
3460	Limit	8.0 to 42.0 V	35.0 V			unsigned 16
3461	Delay	0.02 to 99.99 s	1.00 s	<u> </u>	<u> </u>	UNSIGNED 16
3458	Self acknowledge	YES / NO	NO	$\square Y \square N$		unsigned 16
	Undervoltage Monitoring level 1					
3500	Monitoring	ON / OFF	ON			UNSIGNED 16
3504	Limit	8.0 to 42.0 V	24.0 V			UNSIGNED 16
3505	Delay	0.02 to 99.99 s	60.00 s		<u> </u>	UNSIGNED 16
3502	Self acknowledge	YES / NO	NO			UNSIGNED 16
	Undervoltage Monitoring level 2					
3506	Monitoring	ON / OFF	ON			UNSIGNED 16
3510	Limit	8.0 to 42.0 V	20.0 V			UNSIGNED 16
3511	Delay	0.02 to 99.99 s	10.00 s			UNSIGNED 16
3508	Self acknowledge	YES / NO	NO			UNSIGNED 16
	CANopen Interface Monitoring					
3150	Monitoring	ON / OFF	OFF			UNSIGNED 16
3154	Delay	0.1 to 650.0 s	2.0 s		_	UNSIGNED 16
3152	Self acknowledge	YES / NO	NO	$\square Y \square N$	\square Y \square N	UNSIGNED 16

Page 146/158 © Woodward

Par. ID.	Parameter	Setting range	Default value	Customer setting		Data type
DISCI	RETE INPUTS					
	Discrete Input 1	•		-	-	
	DI 1 operation	N.O. N.C.	N.C.			UNSIGNED 16
	DI 1 delay	0.08 to 650.00 s	0.08 s			UNSIGNED 16
	Discrete Input 2	0.00 to 050.00 3	0.003			CNSIGNED TO
	DI 2 operation	N.O.	N.C.			UNSIGNED 16
		N.C.				
	DI 2 delay	0.08 to 650.00 s	0.08 s			UNSIGNED 16
	Discrete Input 3	N.O.				
	DI 3 operation	N.C.	N.C.			unsigned 16
	DI 3 delay	0.08 to 650.00 s	0.08 s			UNSIGNED 16
	Discrete Input 4	17.0				
	DI 4 operation	N.O. N.C.	N.C.			unsigned 16
	DI 4 delay	0.08 to 650.00 s	0.08 s			UNSIGNED 16
	Discrete Input 5	0.00 to 020.00 5	0.005			CHISTOTIES TO
1281		N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
	•	N.C.		□ N.C.	□ N.C.	
1280	DI 5 delay Discrete Input 6	0.08 to 650.00 s	0.08 s			unsigned 16
		N.O.		□ N.O.	□ N.O.	
1301	DI 6 operation	N.C.	N.O.	□ N.C.	□ N.C.	unsigned 16
1300	DI 6 delay	0.08 to 650.00 s	0.08 s			unsigned 16
	Discrete Input 7	N. O.		-	T W 0	
1321	DI 7 operation	N.O. N.C.	N.O.	□ N.O. □ N.C.	□ N.O. □ N.C.	UNSIGNED 16
1320	DI 7 delay	0.08 to 650.00 s	0.08 s	11. C.	LIN.C.	UNSIGNED 16
	Discrete Input 8		<u>'</u>			
1341	DI 8 operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
	DI 8 delay	N.C. 0.08 to 650.00 s	0.08 s	□ N.C.	□ N.C.	
1340	Discrete Input 9	0.08 to 050.00 8	0.08 8			unsigned 16
	•	N.O.	27.0	□ N.O.	□ N.O.	1.0
1361	DI 9 operation	N.C.	N.O.	□ N.C.	□ N.C.	unsigned 16
1360	DI 9 delay	0.08 to 650.00 s	0.08 s			Unsigned 16
	Discrete Input 10	N.O.		□ N.O.	□ N.O.	
1381	DI 10 operation	N.C.	N.O.	□ N.O.	□ N.C.	unsigned 16
1380	DI 10 delay	0.08 to 650.00 s	0.08 s	_11.0.		UNSIGNED 16
	Discrete Input 11		'			-
1206	DI 11 operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
1205	DI 11 delay	N.C. 0.08 to 650.00 s	0.08 s	□ N.C.	□ N.C.	UNSIGNED 16
1203	Discrete Input 12	0.00 to 030.00 8	0.06 8			UNSIGNED 10
1006	•	N.O.	N.O.	□ N.O.	□ N.O.	16
1226	DI 12 operation	N.C.	N.O.	□ N.C.	□ N.C.	UNSIGNED 16
1225	DI 12 delay	0.08 to 650.00 s	0.08 s			unsigned 16
	External Discrete Input 1	MO		ПМО	ПМО	
16001	Operation	N.O. N.C.	N.O.	□ N.O. □ N.C.	□ N.O. □ N.C.	unsigned 16
16000	Delay	0.05 to 650.00 s	0.20 s	_ 11.0.	_ 11.0.	UNSIGNED 16
	External Discrete Input 2					
16011	Operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
16010	1	N.C. 0.05 to 650.00 s	0.20 s	□ N.C.	□ N.C.	
10010	Delay	0.05 to 650.00 s	U.2U S			unsigned 16

© Woodward Page 147/158

Par. ID.	Parameter	Setting range	Default value	Customer setting		Data type
DISCI	RETE INPUTS					
DISCI	External Discrete Input 3					
1.0021	•	N.O.	NO	□ N.O.	□ N.O.	
16021	Operation	N.C.	N.O.	□ N.C.	□ N.C.	UNSIGNED 16
16020	Delay	0.05 to 650.00 s	0.20 s			UNSIGNED 16
	External Discrete Input 4	N.O.		- - - - - - - - - -		Г
16031	Operation	N.O. N.C.	N.O.	□ N.O. □ N.C.	□ N.O. □ N.C.	Unsigned 16
16030	Delay	0.05 to 650.00 s	0.20 s	Liv.e.	LITT.C.	UNSIGNED 16
	External Discrete Input 5		-			
16041	Operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
	*	N.C.		□ N.C.	□ N.C.	
16040	Delay External Discrete Input 6	0.05 to 650.00 s	0.20 s			UNSIGNED 16
	*	N.O.		□ N.O.	□ N.O.	
16051	Operation	N.C.	N.O.	□ N.C.	□ N.C.	unsigned 16
16050	Delay	0.05 to 650.00 s	0.20 s			UNSIGNED 16
	External Discrete Input 7					
16061	Operation	N.O. N.C.	N.O.	□ N.O. □ N.C.	□ N.O.	UNSIGNED 16
16060	Delay	0.05 to 650.00 s	0.20 s	□ N.C.	□ N.C.	UNSIGNED 16
10000	External Discrete Input 8	0.03 to 030.00 3	0.20 3			CNSIGNED TO
16071	_	N.O.	N.O.	□ N.O.	□ N.O.	inigranies 16
	Operation	N.C.		□ N.C.	□ N.C.	UNSIGNED 16
16070	Delay	0.05 to 650.00 s	0.20 s			UNSIGNED 16
	External Discrete Input 9	N.O.		□ N.O.	□ N.O.	
16081	Operation	N.C.	N.O.	□ N.C.	□ N.C.	unsigned 16
16080	Delay	0.05 to 650.00 s	0.20 s	_ 11.0.	_ 1	UNSIGNED 16
	External Discrete Input 10					
16091	Operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
	*	N.C. 0.05 to 650.00 s	0.20 s	□ N.C.	□ N.C.	
16090	Delay External Discrete Input 11	0.03 to 630.00 s	0.20 S			UNSIGNED 16
	*	N.O.		□ N.O.	□ N.O.	
16101	Operation	N.C.	N.O.	□ N.C.	□ N.C.	unsigned 16
16100	Delay	0.05 to 650.00 s	0.20 s			UNSIGNED 16
	External Discrete Input 12					
16111	Operation	N.O. N.C.	N.O.	□ N.O. □ N.C.	□ N.O.	UNSIGNED 16
16110	Delay	0.05 to 650.00 s	0.20 s	□ N.C.	□ N.C.	UNSIGNED 16
10110	External Discrete Input 13	0.02 13 020.00 3	0.20 5	l .	l .	CHOIGHED TO
16121	Operation Operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
	*	N.C.		□ N.C.	□ N.C.	
16120	Delay	0.05 to 650.00 s	0.20 s			UNSIGNED 16
	External Discrete Input 14	N.O.		□ N.O.	□ N.O.	
16131	Operation	N.O. N.C.	N.O.	□ N.O. □ N.C.	□ N.O.	UNSIGNED 16
16130	Delay	0.05 to 650.00 s	0.20 s		_ 1	UNSIGNED 16
	External Discrete Input 15					
16141	Operation	N.O.	N.O.	□ N.O.	□ N.O.	UNSIGNED 16
	Delay	N.C.		□ N.C.	□ N.C.	
16140	External Discrete Input 16	0.05 to 650.00 s	0.20 s			UNSIGNED 16
		N.O.	37.0	□ N.O.	□ N.O.	
16151	Operation	N.C.	N.O.	□ N.C.	□ N.C.	unsigned 16
16150	Delay	0.05 to 650.00 s	0.20 s			UNSIGNED 16

Page 148/158 © Woodward

Par. ID.	Parameter	Setting range	Default value	Custom	er setting	Data type
DICCI						
	RETE OUTPUTS	: / /	-ltti	20. 1-614. (0	0-1) 0-1	T
	Relay 1	see descr. in LogicsManager				Logman
12110	Relay 2	see descr. in LogicsManager				Logman
12310	Relay 3	see descr. in LogicsManager				Logman
12320	Relay 4	see descr. in LogicsManager				Logman
12130	Relay 5	see descr. in LogicsManager	1 01			Logman
12140	Relay 6	see descr. in LogicsManager	1 010			Logman
12150	Relay 7	see descr. in LogicsManager				Logman
12160	Relay 8	see descr. in LogicsManager				Logman
12170	Relay 9	see descr. in LogicsManager	1 010			Logman
12330	External DO 1	see descr. in LogicsManager				Logman
12340	External DO 2	see descr. in LogicsManager	1 010			Logman
12350	External DO 3	see descr. in LogicsManager	1 010			Logman
12360	External DO 4	see descr. in LogicsManager	1 010			Logman
12370	External DO 5	see descr. in LogicsManager	1 61 6	/		Logman
12380	External DO 6	see descr. in LogicsManager				Logman
12390	External DO 7	see descr. in LogicsManager	1 010			Logman
12400	External DO 8	see descr. in LogicsManager	1 010			Logman
12410	External DO 9	see descr. in LogicsManager	1 010			Logman
12420	External DO 10	see descr. in LogicsManager	1 010			Logman
12430	External DO 11	see descr. in LogicsManager	1 010			Logman
12440	External DO 12	see descr. in LogicsManager	1 010			Logman
12450	External DO 13	see descr. in LogicsManager	1 010			Logman
12460	External DO 14	see descr. in LogicsManager				Logman
12470	External DO 15	see descr. in LogicsManager				Logman
12480	External DO 16	see descr. in LogicsManager	chap, starting page	39; default: (0	& 1) & 1	Logman
COLIN	NTERS					
2515	Counter value preset	0 to 99999999				UNSIGNED 32
2515	S1 active power [0.00MWh]	YES / NO	NO			UNSIGNED 32 UNSIGNED 16
	1 6 3	YES / NO	NO			
2516 2576	S1 reactive power [0.00Mvarh] Transfers to S1	0 to 65535	NO	цтыN	цтцN	UNSIGNED 16
	S2 active power [0.00MWh]	YES / NO	NO			UNSIGNED 16 UNSIGNED 16
2510 2511	S2 active power [0.00Mwn] S2 reactive power [0.00Mwarh]	YES / NO YES / NO	NO NO			UNSIGNED 16 UNSIGNED 16
2511 2577	1		NO	ПІПN	ціціN	
25//	Transfers to S2	0 to 65535				Unsigned 16

LOGIC	CSMANAGER					
	Internal Flags					
12230	Flag 1	see descr. in LogicsManager	chap. starting page 1	39; default: (0	& 1) & 1	Logman
12240	Flag 2	see descr. in LogicsManager	chap. starting page 1	39; default: (0	& 1) & 1	Logman
12250	Flag 3	see descr. in LogicsManager	chap. starting page 1	39; default: (0	& 1) & 1	Logman
12260	Flag 4	see descr. in LogicsManager	chap. starting page 1	39; default: (0	& 1) & 1	Logman
12270	Flag 5	see descr. in LogicsManager	chap. starting page 1	39; default: (0	& 1) & 1	Logman
12280	Flag 6	see descr. in LogicsManager				Logman
12290	Flag 7	see descr. in LogicsManager	chap. starting page 1	39; default: (0	& 1) & 1	Logman
12300	Flag 8	see descr. in LogicsManager	ch. start. p. 139; def.	: (11.01 & !11	.02) & 11.03	Logman
	Set Timers					
1652	Setpoint 1: Hour	0 to 23 h	8 h			UNSIGNED 8
1651	Setpoint 1: Minute	0 to 59 min	0 min			UNSIGNED 8
1650	Setpoint 1: Second	0 to 59 s	0 s			UNSIGNED 8
1657	Setpoint 2: Hour	0 to 23 h	17 h			UNSIGNED 8
1656	Setpoint 2: Minute	0 to 59 min	0 min			UNSIGNED 8
1655	Setpoint 2: Second	0 to 59 s	0 s			UNSIGNED 8
1663	Active day	1 to 31	1			UNSIGNED 8
1662	Active hour	0 to 23 h	12 h			UNSIGNED 8
1661	Active minute	0 to 59 min	0 min			UNSIGNED 8
1660	Active second	0 to 59 s	0 s			UNSIGNED 8
1670	Monday active	YES / NO	YES	$\square Y \square N$	\square Y \square N	unsigned 16
1671	Tuesday active	YES / NO	YES	\square Y \square N	\square Y \square N	Unsigned 16
1672	Wednesday active	YES / NO	YES	$\square Y \square N$	$\square Y \square N$	unsigned 16
1673	Thursday active	YES / NO	YES	$\square Y \square N$	$\square Y \square N$	unsigned 16
1674	Friday active	YES / NO	YES	$\square Y \square N$	$\square Y \square N$	Unsigned 16
1675	Saturday active	YES / NO	NO	$\square Y \square N$	$\square Y \square N$	Unsigned 16
1676	Sunday active	YES / NO	NO	$\square Y \square N$	$\square Y \square N$	Unsigned 16

© Woodward Page 149/158

Par. ID.	Parameter	Setting range	Default value	Custom	er setting	Data type
COM	MUNICATION INTERFACES	<u> </u>				
1702	Device number	1 to 127	1			UNSIGNED 16
1.02	CAN Interfaces				I	
3156	Baudrate	20/50/100/125/250/500/ 800/1000 kBd	125 kBd			UNSIGNED 16
	CANopen Interfaces					
9000	CAN-Open Master	YES / NO	YES	\square Y \square N	\square Y \square N	UNSIGNED 16
9120	Producer Heartbeat Time	20 to 65530 ms	2000 ms			UNSIGNED 16
9100	COB-ID SYNC Message	1 to FFFFFFF	80			UNSIGNED 32
15134	Configure external devices	YES / NO	NO	$\square Y \square N$		UNSIGNED 16
	Additional Server SDOs					
9020	2nd Client->Server COB-ID (rx)	1 to FFFFFFF	80000601			UNSIGNED 32
9022	2nd Server->Client COB-ID (tx)	1 to FFFFFFF	80000581			UNSIGNED 32
9024	3rd Client->Server COB-ID (rx)	1 to FFFFFFF	80000602			UNSIGNED 32
9026	3rd Server->Client COB-ID (tx)	1 to FFFFFFF	80000582			UNSIGNED 32
9028	4th Client->Server COB-ID (rx)	1 to FFFFFFF	80000603			UNSIGNED 32
9030	4th Server->Client COB-ID (tx)	1 to FFFFFFF	80000583			UNSIGNED 32
9032	5th Client->Server COB-ID (rx)	1 to FFFFFFF	80000604			UNSIGNED 32
9034	5th Server->Client COB-ID (tx)	1 to FFFFFFF	80000584			UNSIGNED 32
	Receive PDO 1		T		1	
9300	COB-ID	1 to FFFFFFF	201			UNSIGNED 32
9050	Function	no func. 1st IKD 2nd IKD BK 16DIDO	no func.	☐ no func. ☐ 1st IKD ☐ 2nd IKD ☐ BK 16	□ no func. □ 1st IKD □ 2nd IKD □ BK 16	unsigned 16
9060	Node-ID of the device	1 to 127	2			UNSIGNED 16
9070	RPDO-COB-ID ext. device 1	1 to FFFFFFF	181			UNSIGNED 32
	Receive PDO 2		1			
9310	COB-ID	1 to FFFFFFF	202			UNSIGNED 32
9051	Function	no func. 1st IKD 2nd IKD BK 16DIDO	no func.	☐ no func. ☐ 1st IKD ☐ 2nd IKD ☐ BK 16	☐ no func. ☐ 1st IKD ☐ 2nd IKD ☐ BK 16	UNSIGNED 16
9061	Node-ID of the device	1 to 127	3			UNSIGNED 16
9072	RPDO-COB-ID ext. device 2	1 to FFFFFFF	182			UNSIGNED 32
	Transmit PDO 1					
9600	COB-ID	1 to FFFFFFF	181			UNSIGNED 32
9602	Transmission type	0 to 255	255			UNSIGNED 8
9604	Event-timer	20 to 65000 ms	20 ms			UNSIGNED 16
9609	Number of mapped objects	0 to 4	4			UNSIGNED 8
9605	1.Mapped Object	0 to 65535	8001			UNSIGNED 16
9606	2.Mapped Object	0 to 65535	8000			UNSIGNED 16
9607		0 to 65535	8000			UNSIGNED 16
9608	4.Mapped Object	0 to 65535	8000			unsigned 16
0.555	Transmit PDO 2	1	100	T		
9610	COB-ID	1 to FFFFFFF	182			UNSIGNED 32
9612	Transmission type	0 to 255	255			UNSIGNED 8
9614		20 to 65000 ms	20 ms			UNSIGNED 16
9619	Number of mapped objects	0 to 4	4			UNSIGNED 8
9615	1.Mapped Object	0 to 65535	8002			UNSIGNED 16
9616	2.Mapped Object	0 to 65535	8000			UNSIGNED 16
9617	3.Mapped Object	0 to 65535	8000			UNSIGNED 16
9618	4.Mapped Object	0 to 65535	8000	1		UNSIGNED 16

Page 150/158 © Woodward

Par. ID.	Parameter	Setting range	Default value	Custom	Customer setting	
COM	MUNICATION INTERFACE	S				
	Transmit PDO 3					
9620	COB-ID	1 to FFFFFFF	381			UNSIGNED 32
9622	Transmission type	0 to 255	255			UNSIGNED 8
9624	Event-timer	20 to 65000 ms	20 ms			UNSIGNED 16
9629	Number of mapped objects	0 to 4	1			UNSIGNED 8
9625	1.Mapped Object	0 to 65535	3196			UNSIGNED 16
9626	2.Mapped Object	0 to 65535	0			UNSIGNED 16
9627	3.Mapped Object	0 to 65535	0			UNSIGNED 16
9628	4.Mapped Object	0 to 65535	0			UNSIGNED 16
	Transmit PDO 4		1		1	
9630	COB-ID	1 to FFFFFFF	481			UNSIGNED 32
9632	Transmission type	0 to 255	255			UNSIGNED 8
9634	Event-timer	20 to 65000 ms	20 ms			UNSIGNED 16
9639	Number of mapped objects	0 to 4	1			UNSIGNED 8
9635	1.Mapped Object	0 to 65535	3190			UNSIGNED 16
9636	2.Mapped Object	0 to 65535	0			UNSIGNED 16
9637	3.Mapped Object	0 to 65535	0			UNSIGNED 16
9638	4.Mapped Object	0 to 65535	0			UNSIGNED 16
	Serial Interface 1		<u>.</u>	Į.	<u>I</u>	
		2400 Bd		□ 2400 Bd	□ 2400 Bd	
		4800 Bd		□ 4800 Bd	□ 4800 Bd	
		9600 Bd		□ 9600 Bd	□ 9600 Bd	
21/2	Davidanta	14.4 kBd	9600 Bd	□ 14.4 kBd	□ 14.4 kBd	iniarania 16
3163	Baudrate	19.2 kBd	9000 Bu	□ 19.2 kBd	□ 19.2 kBd	unsigned 16
		38.4 kBd		□ 38.4 kBd	□ 38.4 kBd	
		56 kBd		□ 56 kBd	□ 56 kBd	
		115 kBd		□ 115 kBd	□ 115 kBd	
		No		□ No	□ No	
3161	Parity	Even	No	☐ Even	☐ Even	unsigned 16
		Odd		□ Odd	□ Odd	
3162	Stop Bits	One	One	□ One	□ One	UNSIGNED 16
0102	1	Two	0.1.0	☐ Two	☐ Two	CHOIGHED TO
	Serial Interface 2				1	1
		2400 Bd				
		4800 Bd		□ 9600 Bd	□ 9600 Bd	
		9600 Bd		□ 14.4 kBd	□ 14.4 kBd	
3170	Baudrate	14.4 kBd	19200 Bd	□ 19.2 kBd	□ 19.2 kBd	UNSIGNED 16
		19.2 kBd		□ 38.4 kBd	□ 38.4 kBd	
		38.4 kBd		□ 56 kBd	□ 56 kBd	
		56 kBd 115 kBd		□ 115 kBd	□ 115 kBd	
		No No		□ No	□ No	
3171	Parity	Even	No	□ Even	□ Even	UNSIGNED 16
31/1	ranty	Odd	NO	□ Odd		UNSIGNED 10
		One		□ Oud	□ One	
3172	Stop Bits	Two	One	□ Two	☐ Two	Unsigned 16
		Fullduplex				
3173	Full-, halfduplex mode	Halfduplex	Fullduplex	□ Half		Unsigned 16
3185	ModBus Slave ID	0 to 255	1	<u> </u>	<u>□</u> 11011	UNSIGNED 16
3186		0.00 to 1.00 s	0.00 s			UNSIGNED 16
3100	modous repry delay time	0.00 to 1.00 5	0.00 8	1		ONSIGNED 10

© Woodward Page 151/158

Par. ID.	Parameter	Setting range	Default value	Custom	er setting	Data type
CX /CPC						
SYST	EM PARAMETER					
	Display Backlight					
		On Off		□ On □ Off	□ On □ Off	
4556	Configure display backlight	Auto	On	□ Auto	□ Auto	UNSIGNED 16
		Key actv.		☐ Key act.	☐ Key act.	
4557	Time until backlight shutdown	1 to 999 s	600 s	Li Key act.	Li Key act.	UNSIGNED 16
4337	Daylight saving time	1 10 777 3	000 3			UNSIGNED TO
		On		□ On	□ On	
4591	Daylight saving time	Off	Off	□ Off	□ Off	unsigned 16
4594	DST begin time	0 to 23	2	_ 011	_ 011	UNSIGNED 8
		Sunday / Monday /	Sunday			01.000.000
4500	DOTA : 11	Tuesday / Wednesday /	,			
4598	DST begin weekday	Thursday / Friday /				UNSIGNED 16
		Saturday				
		1st / 2nd / 3rd / 4th / Last /	1st			
4592	DST begin nth. weekday	LastButOne / LastButTwo				unsigned 16
	2001	/ LastButThree				
4593	DST begin month	1 to 12	3			UNSIGNED 8
4597	DST end time	0 to 23	3			unsigned 8
		Sunday / Monday / Tuesday / Wednesday /	Sunday			
4599	DST end weekday	Thursday / Friday /				Unsigned 16
		Saturday				
		1st / 2nd / 3rd / 4th / Last /	4th			
4595	DST end nth. weekday	LastButOne / LastButTwo				UNSIGNED 16
		/ LastButThree				
4596	DST end month	1 to 12	10			unsigned 8
	Password System					
10405	1 3	0000 to 9999				UNSIGNED 16
10407	Code level CAN port	0000 to 9999				UNSIGNED 16
10406	Code level serial port / DPC	0000 to 9999				UNSIGNED 16
10411		0001 to 9999 0001 to 9999				UNSIGNED 16
10412 10413		0001 to 9999				UNSIGNED 16 UNSIGNED 16
10413		0001 to 9999				UNSIGNED 16
10414	Basic level code	0001 to 9999				UNSIGNED 16
1703	Factory settings	YES / NO	NO	\square Y \square N		UNSIGNED 16
1704		YES / NO	NO			UNSIGNED 16
1705		YES / NO	NO			UNSIGNED 16
1701		YES / NO	NO			UNSIGNED 16
10500	Start Bootloader	00000 to 99999			:	UNSIGNED 16
	Clock Set					
1710	Hour	0 to 23 h				UNSIGNED 8
1709	Minute	0 to 59 min				UNSIGNED 8
1708		0 to 59 s				UNSIGNED 8
1698		YES / NO	NO	\square Y \square N	\square Y \square N	UNSIGNED 16
1711		1 to 31				UNSIGNED 8
1712		1 to 12				UNSIGNED 8
1713		0 to 99				UNSIGNED 8
1699	Transfer date to clock	YES / NO	NO	$\square Y \square N$	$\square Y \square N$	UNSIGNED 16
	Version	T .		T	Г	
900		Info				UNSIGNED 8
950		Info				UNSIGNED 8
960		Info				UNSIGNED 8
965	Boot version	Info				UNSIGNED 8
930 940		Info Info				UNSIGNED 8 UNSIGNED 8
940		Info				UNSIGNED 8 UNSIGNED 8
743	1 10grain version	miu		1	<u> </u>	UNSIGNED 0

NOTE

All parameters shaded in gray color are fixed parameters and cannot be configured by the operator.

Page 152/158 © Woodward

Appendix C. Service Options

Product Service Options

The following factory options are available for servicing Woodward equipment, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is purchased from Woodward or the service is performed. If you are experiencing problems with installation or unsatisfactory performance of an installed system, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter) and discuss your problem. In most cases, your problem can be resolved over the phone. If not, you can select which course of action you wish to pursue based on the available services listed in this section.

Returning Equipment For Repair

If a control (or any part of an electronic control) is to be returned to Woodward for repair, please contact Woodward in advance to obtain a Return Authorization Number. When shipping the unit(s), attach a tag with the following information:

- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part numbers (P/N) and serial number (S/N);
- description of the problem;
- instructions describing the desired repair.

CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

© Woodward Page 153/158

Packing A Control

Use the following materials when returning a complete control:

- protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls;
- a strong tape around the outside of the carton for increased strength.

Return Authorization Number RAN

When returning equipment to Woodward, please telephone and ask for the Customer Service Department in Stuttgart [+49 (0) 711 789 54-510]. They will help expedite the processing of your order through our distributors or local service facility. To expedite the repair process, contact Woodward in advance to obtain a Return Authorization Number, and arrange for issue of a purchase order for the unit(s) to be repaired. No work can be started until a purchase order is received.

NOTE

We highly recommend that you make arrangement in advance for return shipments. Contact a Woodward customer service representative at +49 (0) 711 789 54-510 for instructions and for a Return Authorization Number.

Replacement Parts

When ordering replacement parts for controls, include the following information:

- the part numbers P/N (XXXX-XXX) that is on the enclosure nameplate;
- the unit serial number S/N, which is also on the nameplate.

Page 154/158 © Woodward

How To Contact Woodward

Please contact following address if you have questions or if you want to send a product for repair:

Woodward GmbH Handwerkstrasse 29 70565 Stuttgart - Germany

Phone: +49 (0) 711 789 54-510 (8.00 - 16.30 German time)

Fax: +49 (0) 711 789 54-101

e-mail: SalesPGD_EUROPE@woodward.com

stgt-info@woodward.com

For assistance outside Germany, please consult our worldwide directory on Woodward's website (www.woodward.com) for the name of your nearest Woodward distributor or service facility. [For worldwide directory information, go to www.woodward.com/ic/locations.]

© Woodward Page 155/158

Engineering Services

Woodward Industrial Controls Engineering Services offers the following after-sales support for Woodward products. For these services, you can contact us by telephone, by e-mail, or through the Woodward website.

- Technical support
- Product training
- Field service during commissioning

Technical Support is available through our many worldwide locations, through our authorized distributors, depending on the product. This service can assist you with technical questions or problem solving during normal business hours. For technical engineering support, please contact us via our local phone numbers, e-mail us, or use our website and reference technical support.

Product Training is available on-site from several of our worldwide facilities or at your location, depending on the product. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability. For information concerning training, please contact us via our local phone numbers, e-mail us, or use our website and reference *customer training*.

Field Service engineering on-site support is available, depending on the product and location, from one of many worldwide Woodward offices or authorized distributors. Field engineers are experienced on both Woodward products as well as on much of the non-Woodward equipment with which our products interface. For field service engineering assistance, please contact us via our local phone numbers, e-mail us, or use our website and reference *field service*.

Page 156/158 © Woodward

Technical Assistance

If you need to telephone for technical assistance, you will need to provide the following information. Please write it down here before phoning:

Contact Your company			
Your name			
Phone number			
Fax number			
Control (see name plat Unit no. and revision:	e) P/N:	REV:	
Unit type			
Serial number			
Description of your pro	oblem		

Please be sure you have a list of all parameters available. You can print this using ToolKit Additionally you can save the complete set of parameters (standard values) and send them to our Service department via e-mail.

© Woodward Page 157/158

We appreciate your comments about the content of our publications.

Please send comments to: stgt-documentation@woodward.com

Please include the manual number from the front cover of this publication.

Designed in Germany

Woodward GmbH

Handwerkstrasse 29 - 70565 Stuttgart - Germany
Phone +49 (0) 711 789 54-510 • Fax +49 (0) 711 789 54-101
<u>SupportPGD_EMEA@woodward.com</u>

Homepage

http://www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address/phone/fax/e-mail information for all locations is available on our website (www.woodward.com).

2013/09/Stuttgart