

easYgen-1000 Aggregatesteuerung

Installation
Softwareversion 2.0xxx

WARNUNG

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen. Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

Der Motor, die Turbine oder irgend ein anderer Typ von Antrieb sollte über einen unabhängigen Überdrehzahlschutz verfügen (Übertemperatur und Überdruck wo notwendig), welcher absolut unabhängig von dieser Steuerung arbeitet. Der Schutz soll vor Hochlauf oder Zerstörung des Motors, der Turbine oder des verwendeten Antriebes sowie den daraus resultierenden Personen- oder Produktschäden schützen, falls der/die mechanisch-hydraulische Regler, der/die elektronische/n Regler, der/die Aktuator/en, die Treibstoffversorgung, der Antriebsmechanismus, die Verbindungen oder die gesteuerte/n Einheit/en ausfallen.

Jegliche unerlaubte Änderung oder Verwendung dieses Geräts, welche über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden oder/und Schäden am Produkt hervorrufen. Jegliche solche unerlaubte Änderung: (i) begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus, und (ii) hebt Produktzertifizierungen oder -listungen auf.

ACHTUNG

Um Schäden an einem Steuerungsgerät zu verhindern, welches einen Alternator/Generator oder ein Batterieladegerät verwendet, stellen Sie bitte sicher, dass das Ladegerät vor dem Abklemmen ausgeschaltet ist.

Diese elektronische Steuerung enthält statisch empfindliche Bauteile. Bitte beachten Sie folgende Hinweise um Schäden an diesen Bauteilen zu verhindern.

- Entladen Sie die statische Aufladung Ihres K\u00f6rpers bevor Sie die Steuerung ber\u00fchren (stellen Sie hierzu sicher, dass die Steuerung ausgeschaltet ist, ber\u00fchren Sie eine geerdete Oberfl\u00e4che und halten Sie zu dieser Oberfl\u00e4che Kontakt, so lange Sie an dieser Steuerung arbeiten).
- Vermeiden Sie Plastik, Vinyl und Styropor in der n\u00e4heren Umgebung der Leiterplatten (ausgenommen sind hiervon anti-statische Materialien).
- Berühren Sie keine Bauteile oder Kontakte auf der Leiterplatte mit der Hand oder mit leitfähigem Material.

VERALTETES DOKUMENT

Dieses Dokument kann seit Erstellung dieser Kopie überarbeitet oder aktualisiert worden sein. Um sicherzustellen, dass Sie über die aktuellste Revision verfügen, sollten Sie auf der Woodward-Website nachsehen:

http://www.woodward.com/pubs/current.pdf

Die Revisionsstufe befindet sich unten rechts auf der Titelseite gleich nach der Dokumentennummer. Die aktuellsten Version der meisten Dokumente finden Sie hier:

http://www.woodward.com/publications

Wenn Sie Ihr Dokument hier nicht finden, wenden Sie sich bitte an Ihren Kundendienstmitarbeiter, um die aktuellste Kopie zu erhalten.

Wichtige Definitionen

WARNUNG

Werden die Warnungen nicht beachtet, kann es zu einer Zerstörung des Gerätes und der daran angeschlossenen Geräte kommen. Entsprechende Vorsichtsmaßnahmen sind zu treffen.

ACHTUNG

Bei diesem Symbol werden wichtige Hinweise zur Errichtung, Montage und zum Anschließen des Gerätes gemacht. Bitte beim Anschluss des Gerätes unbedingt beachten.

HINWEIS

Verweise auf weiterführende Hinweise und Ergänzungen sowie Tabellen und Listen werden mit dem i-Symbol verdeutlicht. Diese finden sich meistens im Anhang wieder.

Woodward behält sich das Recht vor, jeden beliebigen Teil dieser Publikation zu jedem Zeitpunkt zu verändern. Alle Information, die durch Woodward bereitgestellt werden, wurden geprüft und sind korrekt. Woodward übernimmt keinerlei Garantie.

© Woodward Alle Rechte vorbehalten

Seite 2/53 © Woodward

Revisionsliste

Rev.	Datum	Bearb.	Änderungen
NEW	05-04-29	TP	Veröffentlichung basierend auf GR37203
Α	05-07-06	TP	Kleinere Korrekturen, Erdstrommessung überarbeitet

Inhalt

KAPITEL 1. GENERELLE INFORMATIONEN	<u>7</u>
KAPITEL 2. WARNUNG VOR ELEKTROSTATISCHER ENTLADUNG	8
KAPITEL 3. VERWENDUNG AUF SCHIFFEN	9
Anwendung	9
Anschluss	
Messung	9
KAPITEL 4. GEHÄUSE	10
Schalttafel-Ausschnitt	
Abmessungen	11
Seitenansicht	12
Einbau	13
KAPITEL 5. ANSCHLUßPLÄNE - ÜBERSICHT	14
Gesamtübersicht	15
Betriebsmodus {0}	18
Betriebsmodus (10)	19
Betriebsmodus (1oc)	20
Betriebsmodus (20c)	21
KAPITEL 6. ANSCHLUßKLEMMEN	22
Spannungsversorgung	
Spannungsmessung (FlexRange)	23
Spannungsmessung: Generator	23
Spannungsmessung: Netz	27
Strommessung	31
Generator	31
Netzstrom (nur {2oc})	33
Erdstrom	34
Leistungsmessung	35
Pickup	36
Digitaleingänge	37
Digitaleingänge: Bipolare Signale	37
Digitaleingänge: Arbeitslogik	
Relaisausgänge (Steuerausgänge und LogicsManager)	
Analogeingänge (<i>FlexIn</i>)	41
Anschluß zweipoliger Geber	41
Anschluß einpoliger Geber und Kombination ein- und zweipoliger Geber	42
Schnittstellen	43
Übersicht	43
CAN-Bus (FlexCAN)	44
DPC - Direktparametrierung	45

KAPITEL 7. TECHNISCHE DATEN	46
KAPITEL 8. UMGEBUNGSBEDINGUNGEN	49
KAPITEL 9. GENAUIGKEITEN	50
KAPITEL 10. KONFORMITÄTSERKLÄRUNG	51

Abbildungen und Tabellen

Abbildungen

Abbildung 4-1: Schalttafelausschnitt	10
Abbildung 4-2: Gehäuseabmessungen	
Abbildung 4-3: Seitenansicht - ohne Befestigungsklammer	
Abbildung 4-4: Seitenansicht - mit Befestigungsklammer	12
Abbildung 5-1: Klemmenplan - Übersicht	
Abbildung 5-2: Klemmenplan - Betriebsmodus {0} - Base Mode	18
Abbildung 5-3: Klemmenplan - Betriebsmodus {1o} - 1-LS-Modus	19
Abbildung 5-4: Klemmenplan - Betriebsmodus {1oc} - 1-LS-Modus	
Abbildung 5-5: Klemmenplan - Betriebsmodus {2oc} - 2-LS-Modus	
Abbildung 6-1: Spannungsversorgung	
Abbildung 6-2: Spannungsversorgung - max. Spannungseinbruch bei Maximalbelastung	
Abbildung 6-3: Spannungsmessung (<i>FlexRange</i>) - Generator	
Abbildung 6-4: Spannungsmessung (<i>FlexRange</i>) - Generator, 3Ph 4W	
Abbildung 6-5: Spannungsmessung (<i>FlexRange</i>) - Generator, 3Ph 3W	25
Abbildung 6-6: Spannungsmessung (FlexRange) - Generator, 1Ph 3W	26
Abbildung 6-7: Spannungsmessung (<i>FlexRange</i>) - Generator, 1Ph 2W	26
Abbildung 6-8: Spannungsmessung (<i>FlexRange</i>) - Netz	27
Abbildung 6-9: Spannungsmessung (<i>FlexRange</i>) - Netz, 3Ph 4W	28
Abbildung 6-10: Spannungsmessung (<i>FlexRange</i>) - Netz, 3Ph 3W	29
Abbildung 6-11: Spannungsmessung (<i>FlexRange</i>) - Netz, 1Ph 3W	30
Abbildung 6-12: Spannungsmessung (<i>FlexRange</i>) - Netz, 1Ph 2W	30
Abbildung 6-13: Strommessung - Generator	31
Abbildung 6-14: Strommessung - Generator, L1 L2 L3	32
Abbildung 6-15: Strommessung - Generator, Phase Lx	32
Abbildung 6-16: Strommessung - Netzstrom	33
Abbildung 6-17: Strommessung - Generator, Phase Lx	33
Abbildung 6-18: Strommessung - Erdstrom	34
Abbildung 6-19: Leistungsmessung - Leistungsrichtung	35
Abbildung 6-20: Pickup - Prinzipdarstellung	36
Abbildung 6-21: Pickup-Eingang	36
Abbildung 6-22: Minimal notwendige Eingangsspannung in Abhängigkeit der Frequenz	
Abbildung 6-23: Digitaleingänge - Alarm-/Steuereingang - positives Signal	
Abbildung 6-24: Digitaleingänge - Alarm-/Steuereingang - negatives Signal	
Abbildung 6-25: Digitaleingänge - Alarm-/Steuereingänge - Arbeitslogik	38
Abbildung 6-26: Relaisausgänge	
Abbildung 6-27: Analogeingänge (FlexIn) - Anschluß zweipoliger Geber	
Abbildung 6-28: Analogeingänge (<i>FlexIn</i>) - Anschluß einpoliger Geber	
Abbildung 6-29: Analogeingänge (FlexIn) - Kombinierter Anschluß ein- und zweipoliger Geber	
Abbildung 6-30: Schnittstellen - Übersicht	
Abbildung 6-31: Schnittstellen - CAN-Bus (FlexCAN)	44
Abbildung 6-32: Schnittstellen - CAN-Bus - Schirmanschluß	44
Abbildung 6-33: Schnittstellen - CAN-Bus - Abschlußwiderstand	11

Tabellen

Tabelle 1-1: Bedienungsanleitungen - Übersicht	7
Tabelle 4-1: Tafelausschnitt	10
Tabelle 5-1: Klemmenübersicht, Teil 1	16
Tabelle 5-2: Klemmenübersicht, Teil 2	
Tabelle 6-1: Spannungsversorgung - Klemmenbelegung	22
Tabelle 6-2: Spannungsmessung - Klemmenbelegung - Generatorspannung	
Tabelle 6-3: Spannungsmessung (FlexRange) - Klemmenbelegung - Generator, 3Ph 4W	
Tabelle 6-4: Spannungsmessung (FlexRange) - Klemmenbelegung - Generator, 3Ph 3W	25
Tabelle 6-5: Spannungsmessung (FlexRange) - Klemmenbelegung - Generator, 1Ph 3W	26
Tabelle 6-6: Spannungsmessung (FlexRange) - Klemmenbelegung - Generator, 1Ph 2W	
Tabelle 6-7: Spannungsmessung (FlexRange) - Klemmenbelegung - Netz	27
Tabelle 6-8: Spannungsmessung (FlexRange) - Klemmenbelegung - Netz, 3Ph 4W	28
Tabelle 6-9: Spannungsmessung (FlexRange) - Klemmenbelegung - Netz, 3Ph 3W	29
Tabelle 6-10: Spannungsmessung (FlexRange) - Klemmenbelegung - Netz, 1Ph 3W	30
Tabelle 6-11: Spannungsmessung (FlexRange) - Klemmenbelegung - Netz, 1Ph 2W	30
Tabelle 6-12: Strommessung - Klemmenbelegung - Generatorstrom	31
Tabelle 6-13: Strommessung - Klemmenbelegung - Generator, L1 L2 L3	32
Tabelle 6-14: Strommessung - Klemmenbelegung - Generator, Phase Lx	32
Tabelle 6-15: Strommessung - Klemmenbelegung - Netzstrom	33
Tabelle 6-16: Strommessung - Klemmenbelegung - Generator, Phase Lx	33
Tabelle 6-17: Strommessung - Klemmenbelegung - Erdstrom	34
Tabelle 6-18: Pickup - Klemmenbelegung	36
Tabelle 6-19: Digitaleingänge - Klemmenbelegung - Alarm-/Steuereingänge	38
Tabelle 6-20: Relaisausgänge - Klemmenbelegung, Teil 1	39
Tabelle 6-21: Relaisausgänge - Klemmenbelegung, Teil 2	40
Tabelle 6-22: Analogeingänge (<i>FlexIn</i>) - Klemmenbelegung - Anschluß zweipoliger Geber	41
Tabelle 6-23: Analogeingänge (<i>FlexIn</i>) - Klemmenbelegung - Anschluß einpoliger Geber	42
Tabelle 6-24: Schnittstellen - Verbindungsübersicht	43

Kapitel 1. Allgemeine Informationen

Тур		Deutsch	Englisch
easYgen-1000 Serie			
easYgen-1000 - Installation	diese Anleitung ⇒	GR37320	37320
easYgen-1000 - Konfiguration		GR37321	37321
easYgen-1000 - Funktion		GR37322	37322
easYgen-1000 - Anwendung		GR37205	37205
easYgen-1000 - Schnittstellen		GR37262	37262

		1
Zusätzliche Anleitungen		
IKD 1 - Bedienungsanleitung	GR37135	37135
Digitale Erweiterungskarte mit 8 Digitaleingängen und 8 Relaisausgängen, die über C		
wird. Die Auswertung der Digitaleingänge sowie die Ansteuerung der Relaisausgäng	ge erfolgt über das Steuerge	rät.
IKN 1 - Bedienungsanleitung	GR37136	37136
20-kanaliger NiCrNi-Temperaturscanner, der die Meßwerte, gemessen über die Senso	oren auf der IKN 1 auf Übe	r- oder Unterschrei-
tung überwacht und ein entsprechend parametriertes Relais auf der IKN 1 ansteuert. I	Die IKN 1 kann über den C	AN-Bus mit dem
Steuergerät zur Anzeige der Meßwerte sowie der Alarme verbunden werden.		
LeoPC1 - Benutzerhandbuch	GR37146	37146
PC-Programm zur Visualisierung, zur Parametrierung, zur Fernsteuerung, zum Datale	ogging, zum Sprache laden,	, zur Alarm- und
Benutzerverwaltung und zum Verwalten des Ereignisspeichers. Diese Anleitung besch	chreibt die Verwendung des	Programmes.
LeoPC1 - Programmierhandbuch	GR37164	37164
PC-Programm zur Visualisierung, zur Parametrierung, zur Fernsteuerung, zum Datale	ogging, zum Sprache laden,	, zur Alarm- und
Benutzerverwaltung und zum Verwalten des Ereignisspeichers. Diese Anleitung besch	chreibt die Einrichtung des	Programmes.
GW 4 - Bedienungsanleitung	GR37133	37133
Gateway zum Umsetzen des CAN-Busses auf eine andere Schnittstelle oder auf einer	n anderen Bus.	
ST 3 - Bedienungsanleitung	GR37112	37112
Regler zur Regelung des Lambdawertes eines Gasmotors. Der eingestellte Lambdawertes	ert wir direkt über die Laml	odasonde gemessen
und auf den parametrierten Wert geregelt.		

Tabelle 1-1: Bedienungsanleitungen - Übersicht

Bestimmungsgemäßer Gebrauch Das Gerät darf nur für die in dieser Bedienungsanleitung beschriebenen Einsatzfälle betrieben werden. Der einwandfreie und sichere Betrieb des Produktes setzt sachgemäßen Transport, sachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus.

HINWEIS

Diese Bedienungsanleitung ist für einen maximalen Ausbau des Gerätes entwickelt worden. Sollten Ein-/Ausgänge, Funktionen, Parametriermasken und andere Einzelheiten beschrieben sein, die mit der vorliegenden Geräteausführung nicht möglich sind, sind diese als gegenstandslos zu betrachten.

Diese Bedienungsanleitung ist zur Installation und Inbetriebnahme des Gerätes entwickelt worden. Die Vielzahl der Parameter kann nicht jede erdenkliche Variationsmöglichkeit erfassen und ist aus diesem Grund lediglich als Einstellhilfe gedacht. Bei einer Fehleingabe oder bei einem Funktionsverlust können die Voreinstellungen der Parameterliste im Konfigurationshandbuch GR37320 entnommen werden.

© Woodward Seite 7/53

Kapitel 2. Warnung vor elektrostatischer Entladung

Das gesamte elektronische Equipment ist empfindlich gegenüber statischen Entladungen; einige Bauteile und Komponenten mehr als andere. Um diese Bauteile und Komponenten vor statischer Zerstörung zu schützen müssen Sie spezielle Vorkehrungen treffen um das Risiko zu minimieren und elektrostatische Aufladungen zu entladen.

Bitte befolgen Sie die beschriebenen Hinweise, sobald Sie mit diesem Gerät oder in dessen Nähe arbeiten:

- 1. Bevor Sie an diesem Gerät Wartungsarbeiten durchführen entladen Sie bitte sämtliche elektrostatische Ladungen Ihres Körpers durch das Berühren eines geeigneten geerdeten Objekts aus Metall (Röhren, Schaltschränke, geerdete Einrichtungen, etc.).
- Vermeiden Sie elektrostatische Ladungen in Ihrem Körper in dem Sie auf synthetische Kleidung verzichten. Tragen Sie so viel Baumwolle oder baumwollähnliche Kleidung wie möglich da diese Stoffe weniger elektrostatische Ladungen tragen können als synthetische Stoffe.
- 3. Vermeiden Sie Plastik, Vinyl und Styropor (wie z. B. Plastiktassen, Tassenhalter, Zigarettenschachteln, Zellophan-Umhüllungen, Vinylbücher oder -ordner oder Plastikaschenbecher) in der näheren Umgebung des Gerätes, den Modulen und Ihrer Arbeitsumgebung.
- 4. Mit dem Öffnen des Gerätes erlischt die Gewährleistung!

Entnehmen Sie keine Leiterplatten aus dem Gerätegehäuse, falls dies nicht unbedingt notwendig sein sollte. Sollten Sie dennoch Leiterplatten aus dem Gerätegehäuse entnehmen müssen, folgen Sie den genannten Hinweisen:

- Vergewissern Sie sich, daß das Gerät völlig spannungslos ist (alle Steckverbinder müssen abgezogen werden).
- Fassen Sie keine Bauteile auf der Leiterplatte an. Halten Sie die Leiterplatte an den Ecken.
- Berühren Sie keine Kontakte, Verbinder oder Komponenten mit leitfähigen Materialien oder Ihren Händen.
- Sollten Sie eine Leiterplatte tauschen müssen, belassen Sie die neue Leiterplatte in Ihrer anti-statischen Verpackung bis Sie die neue Leiterplatte installieren können. Sofort nach dem Entfernen der alten Leiterplatte stecken Sie diese in den anti-statischen Behälter.

ACHTUNG

Um die Zerstörung von elektronischen Komponenten durch unsachgemäße Handhabung zu verhindern Lesen und Beachten Sie die Hinweise in der Woodward-Anleitung 82715 "Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules".

Seite 8/53 © Woodward

Kapitel 3. Verwendung auf Schiffen

ACHTUNG

Die folgenden Punkten sind sehr wichtig, falls die easYgen Aggregatesteuerung auf Schiffen oder Booten verwendet wird, und müssen entsprechend befolgt werden.

Anwendung

Eine isolierte Spannungsversorgung muß für die Versorgung des easYgen verwendet werden, wenn es für eine isolierte Stromversorgung verwendet wird.

Die Konfigurationsschnittstelle (RS-232) zur Verwendung mit dem DPC-Kabel dient nur zur Wartung und Konfiguration. Zur Verwendung des DPC-Kabels im normalen Betrieb beachten Sie die Hinweise im Kapitel DPC - Direktparametrierung auf Seite 45.

Wenn das eas Ygen auf der Brücke oder an Deck verwendet wird, muß ein EMI-Filter (z.B. TIMONTA FSS2-65-4/3) für die Stromversorgungseingänge verwendet werden.

Anschluss

Klemme 48 muß am Gerät geerdet werden.

Das easYgen hat weniger als 2% Abweichung bei der Strommessung wenn es elektromagnetischen Feldern ausgesetzt ist.

© Woodward Seite 9/53

Kapitel 4. Gehäuse

Schalttafel-Ausschnitt

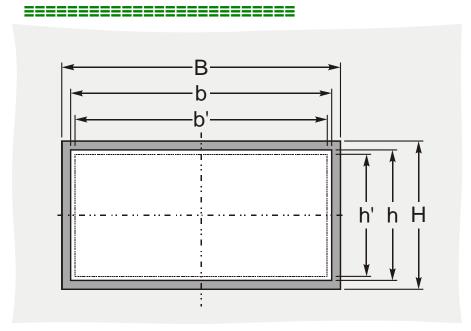


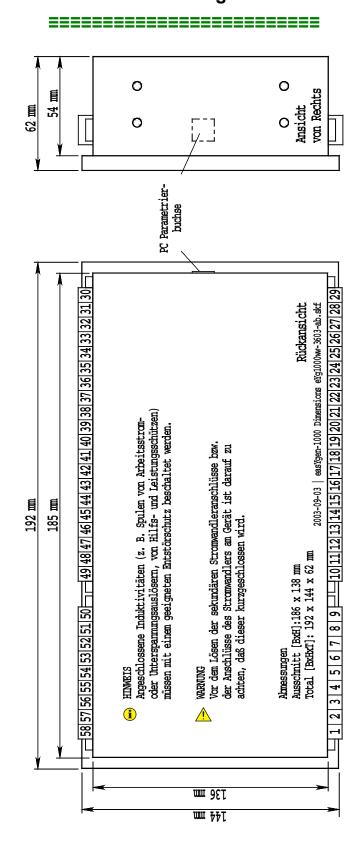
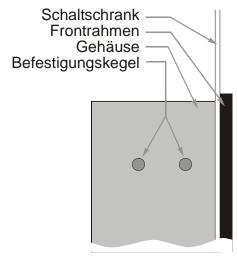
Abbildung 4-1: Schalttafelausschnitt

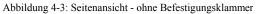
Маß	Bezeichnung			Toleranz
Н	Höhe	Gesamt	144 mm	
h		Frontausschnitt	138 mm	+ 1,0 mm
h'		Gehäusegröße	136 mm	
В	Breite	Gesamt	192 mm	
B b	Breite	Gesamt Frontausschnitt	192 mm 186 mm	+ 1,1 mm
B b b'	Breite			 + 1,1 mm

Tabelle 4-1: Tafelausschnitt

Seite 10/53 © Woodward

Abmessungen


Abbildung 4-2: Gehäuseabmessungen

© Woodward Seite 11/53

Seitenansicht

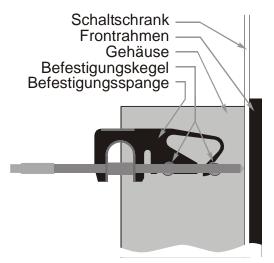
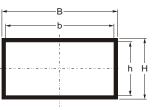


Abbildung 4-4: Seitenansicht - mit Befestigungsklammer

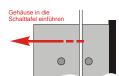

Seite 12/53 © Woodward

Einbau

Zum Einbauen des Gerätes in eine Schaltschranktüre gehen Sie bitte wie folgt vor:

1. Schalttafel ausschneiden

Schneiden Sie die Schalttafel entsprechend der Abbildung 4-2 aus.


2. Klemmen entfernen

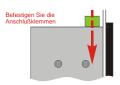
Lösen Sie die Schrauben der Anschlußklemmen und entfernen Sie diese.

3. Gerät in den Ausschnitt einführen

Führen Sie das Gerät in die Schalttafel ein. Prüfen Sie dabei, ob das Gerät gut sitzt. Sollte der Schalttafelausschnitt nicht groß genug sein, vergrößern Sie diesen entsprechend.

4. Befestigungsspangen montieren

Klicken Sie die Befestigungsspangen auf die Befestigungskegel, wie im Bild rechts beschrieben.


5. Klammer festdrehen

Drehen Sie an den Befestigungsschrauben so lange, bis das Gehäuse gut gegen die Schalttafel gepreßt wird. Der Anpreßdruck sollte nicht zu hoch gewählt werden, damit der Frontrahmen nicht vom Gehäuse springt. Sollte der Gehäuserahmen vom Gehäuse springen, lösen Sie die Schrauben wieder, entfernen die Spangen und ziehen das Gehäuse ein Stück aus der Schalttafel heraus. Drücken Sie nun den Frontrahmen an das Gehäuse, bis dieser einrastet.

6. Klemmen montieren

Montieren Sie nun die grünen Anschlußklemmen des Gerätes und fixieren Sie diese mittels der Schrauben.

Hinweis: Die Verwendung des Dichtungskits (P/N 8923-1043) erhöht den IP-Schutzgrad auf IP42 von vorne. Die Montage wird in der Anleitung beschrieben, die dem Dichtungskit beiliegt.

© Woodward Seite 13/53

Kapitel 5. Anschlußpläne - Übersicht

HINWEIS

Bitte beachten Sie die Anleitung GR37322 "Funktionsbeschreibung" zur Auswahl des Betriebsmodus. Entsprechend der Einstellung werden unterschiedliche Klemmen verwendet.

- Betriebsmodus {0} [BM] Basis-Modus Seite 18
 - Messung von Motor-/Generatorwerten (z. B. Spannung, Strom, Kühltemperatur, Öldruck, etc.)
 - Motor Start/Stop
- Betriebsmodus {1o} [GLS öffnen] 1-LS-Modus Seite 19
 - Messung von Motor-/Generatorwerten (z. B. Spannung, Strom, Kühltemperatur, Öldruck, etc.)
 - Motor Start/Stop
 - Motor-/Generatorschutz (Relaisausgang zum Öffnen des GLS)
- Betriebsmodus {1oc} [GLS öffnen/schließen] 1-LS-Modus Seite 20
 - Messung von Motor-/Generatorwerten (z. B. Spannung, Strom, Kühltemperatur, Öldruck, etc.)
 - Motor Start/Stop
 - Motor-/Generatorschutz (Relaisausgang zum Öffnen des GLS)
 - GLS-Bedienung (Relaisausgang zum Schließen des GLS)
- Betriebsmodus {2oc} [GLS/NLS öffnen/schließen] 2-LS-Modus Seite 22
 - Messung von Motor-/Generatorwerten (z. B. Spannung, Strom, Kühltemperatur, Öldruck, etc.)
 - Motor Start/Stop
 - Motor-/Generatorschutz (Relaisausgang zum Öffnen des GLS)
 - GLS-Bedienung (Relaisausgang zum Schließen des GLS)
 - NLS-Bedienung (Relaisausgang zum öffnen und Schließen des NLS)
 - Netzausfallerkennung und automatischer Motor-Start/Stop

Seite 14/53 © Woodward

Gesamtübersicht

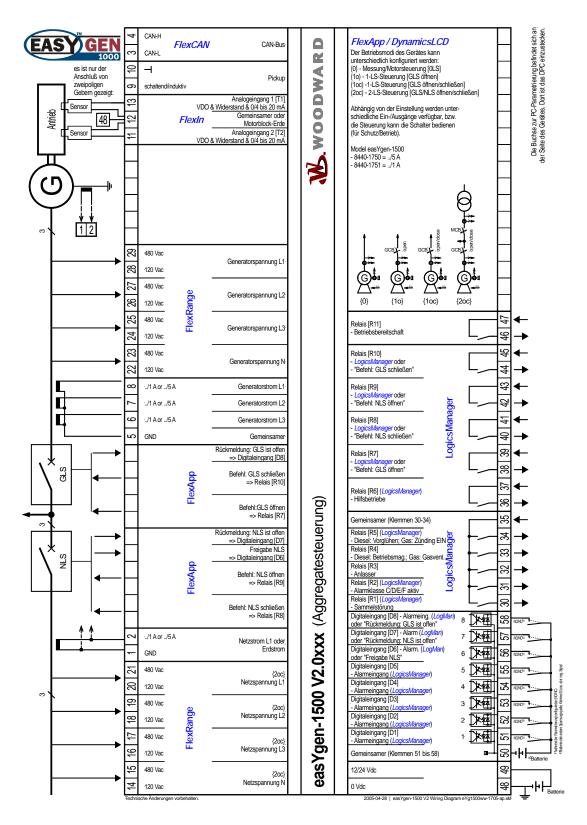


Abbildung 5-1: Klemmenplan - Übersicht

© Woodward Seite 15/53

Unterschiede der Anschlußklemmen in Abhängigkeit des gewählten Betriebsmodus

Das Gerät kann für einen der vier Betriebsmodi programmiert werden. In Abhängigkeit des gewählten Betriebsmodus haben die Klemmen unterschiedlichen Funktionen. Die folgende Tabelle listet alle Anschlußklemmen des Gerätes und deren Funktion bei dem entsprechenden Betriebsmodus für alle verfügbaren Betriebsmodi auf.

Klemme	Bezeichnung	Тур	Belegung				
				G a {0} ab Seite 18	GCB Solve So	GCB Tool (10c) ab Seite 20	MCB sesponded GCB 20c ab Seite 21
1 2	Erdstrom #NNI	Messung	GND/1 A oder/5 A #A	✓	✓	✓	✓ #CF wahlweise
1 2	Netzstrom	Messung	GND L1:/1 A oder/5 A #A				√ #CF
3	CAN-Bus	Schnitt- stelle	CAN-L CAN-H	✓	✓	✓	✓
5 6 7 8	Generatorstrom	Messung	GND L3: ./1 A oder/5 A *A L2:/1 A oder/5 A *A L1:/1 A oder/5 A *A	~	~	~	~
9 10	Pickup (magnetisch oder diskret)	Messung	induktiv/schaltend GND	✓	✓	✓	✓
11 12 13	Analogeingang	Messung	AI [T2] - wahlweise #CF Batterie-Erde oder Motorblock-Erde AI [T1] - wahlweise #CF	√	~	√	~
14 15 16 17 18 19 20 21	Netzspannung	Messung	N: 120 Vac N: 480 Vac L3: 120 Vac L3: 480 Vac L2: 120 Vac L2: 480 Vac L1: 120 Vac L1: 480 Vac				·
22 23 24 25 26 27 28 29	Generatorspannung	Messung	N: 120 Vac N: 480 Vac L3: 120 Vac L3: 480 Vac L2: 120 Vac L2: 120 Vac L1: 120 Vac L1: 480 Vac L1: 480 Vac	√	√	√	√

#A - alternativ (unterschiedliche Hardware); #NNI- noch nicht implementiert; #CF - Auswahl während der und über die Parametrierung

Tabelle 5-1: Klemmenübersicht, Teil 1

Seite 16/53 © Woodward

Klemme	Bezeichnung	Тур	Dalagung				
Kiemine	Bezeichnung	Тур	Belegung		I	I	1 .
							I =
						9	мсв %
				l †	† _	n/clos	al/do
					GCB 3 8	GCB &	GCB . 8
					-		4
							(G)
							X
				{0}	{1o}	{1oc}	{2oc}
				ab Seite 18	ab Seite 19	ab Seite 20	ab Seite 21
30	Relais [R1]		Schließer (NO)	LogMa #R	LogMa #R	LogMa #R	LogMa #R
31	Relais [R2]		Schließer (NO)	LogMa #R	LogMa ^{#R}	LogMa #R	LogMa #R
32	Relais [R3]	Relais	Schließer (NO)			asser	
33	Relais [R4]	rectais	Schließer (NO)	Diese	l: Betriebsma	gnet; Gas: Gas	sventil
34	Relais [R5]		Schließer (NO)		Logi	Ma ^{#R}	
35	Gemeinsamer		Gemeinsamer	✓	✓	✓	✓
36	Relais [R6]	Relais	Wurzel		Logi	Ma ^{#R}	
37	Kelais [Ko]	Relais	Schließer (NO)		Logi	vi ti	
38	Relais [R7]	Relais	Wurzel	LogMa #R	Re	fehl: GLS öff	nen
39	reads [R/]	recturs	Schließer (NO)	Logina	ВС	iem. GES on	
40	Relais [R8]	Relais	Wurzel	LogMa #R	LogMa #R	LogMa #R	Befehl: NLS
41	reads [res]	1101410	Schließer (NO)	Logina	Logina	Logina	schließen
42	Relais [R9]	Relais	Wurzel	LogMa #R	LogMa #R	LogMa #R	Befehl: NLS
43	reas [re]	1101410	Schließer (NO)	Logina	Logina	Logina	öffnen
44	Relais [R10]	Relais	Wurzel	LogMa #R	LogMa #R	Befehl: GI	S schließen
45	Troinis [Trio]		Schließer (NO)	208110	208114	Derem. GE	5 501111025011
46	Relais [R11]	Relais	Wurzel	В	etriebsbereits	chaft / LogMa	#R
47	- t J		Schließer (NO)		1		T.
48	Spannungsversorgung	Ver-	0 Vdc	✓	✓	✓	✓
49	1 0 0 0	sorgung	12/24 Vdc				
50	Gemeinsamer		Gemeinsamer	√	√	✓	✓ #D
51	Digitaleingang [D1]		Kontakt	LogMa ^{#D}	LogMa ^{#D}	LogMa ^{#D}	LogMa ^{#D}
52	Digitaleingang [D2]		Kontakt	LogMa #D	LogMa ^{#D}	LogMa #D	LogMa ^{#D}
53	Digitaleingang [D3]		Kontakt	LogMa #D	LogMa ^{#D}	LogMa ^{#D}	LogMa #D
54	Digitaleingang [D4]	Eingang	Kontakt	LogMa #D	LogMa ^{#D}	LogMa ^{#D}	LogMa ^{#D}
55	Digitaleingang [D5]		Kontakt	LogMa #D	LogMa ^{#D}	LogMa ^{#D}	LogMa ^{#D}
56	Digitaleingang [D6]		Kontakt	LogMa #D	LogMa ^{#D}	LogMa ^{#D}	#1
57	Digitaleingang [D7]		Kontakt	LogMa #D	LogMa ^{#D}	LogMa ^{#D}	RM: NLS
58	Digitaleingang [D8]		Kontakt	LogMa #D	LogMa #D	RM: GLS is	t geschlossen

Tabelle 5-2: Klemmenübersicht, Teil 2

Seite 17/53 © Woodward

[#]R - LogMa - Relais-Manager (über die Funktion LogicsManager lassen sich diese Relais frei programmieren)
#D - LogMa - Digitaleingangs-Manager (über die Funktion LogicsManager lassen sich diese Digitaleingänge frei programmieren)
#1 - es kann parametriert werden, ob die Freigabe NLS über [D6] erfolgen soll oder der NLS immer freigegeben ist (dann ist der Eingang LogMa *D)
RM:NLS..Rückmeldung: NLS ist geschlossen

Betriebsmodus {0}

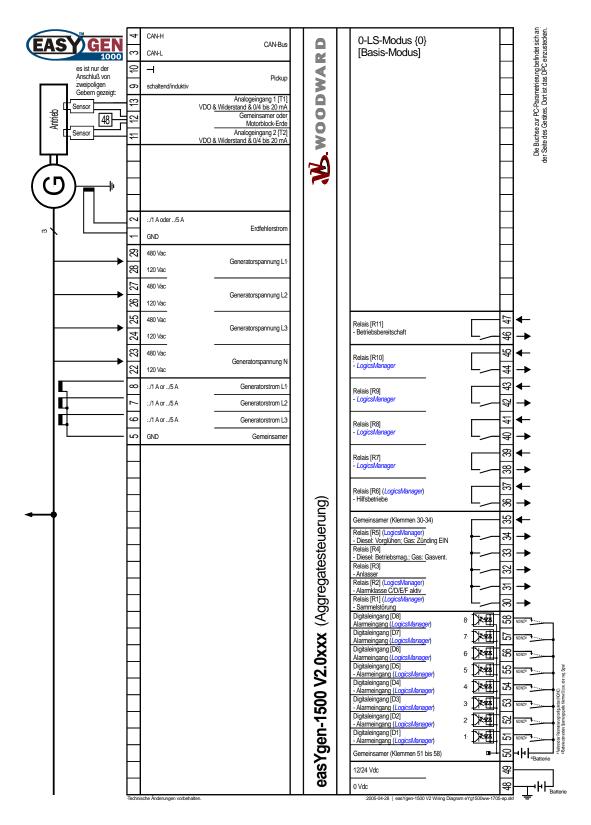


Abbildung 5-2: Klemmenplan - Betriebsmodus {0} - Base Mode

Seite 18/53 © Woodward

Betriebsmodus {10}

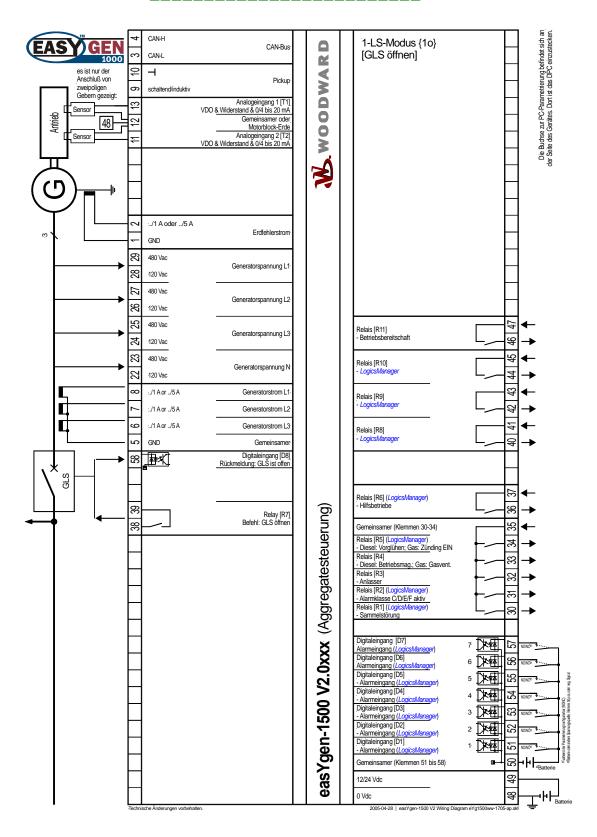


Abbildung 5-3: Klemmenplan - Betriebsmodus {1o} - 1-LS-Modus

© Woodward Seite 19/53

Betriebsmodus {1oc}

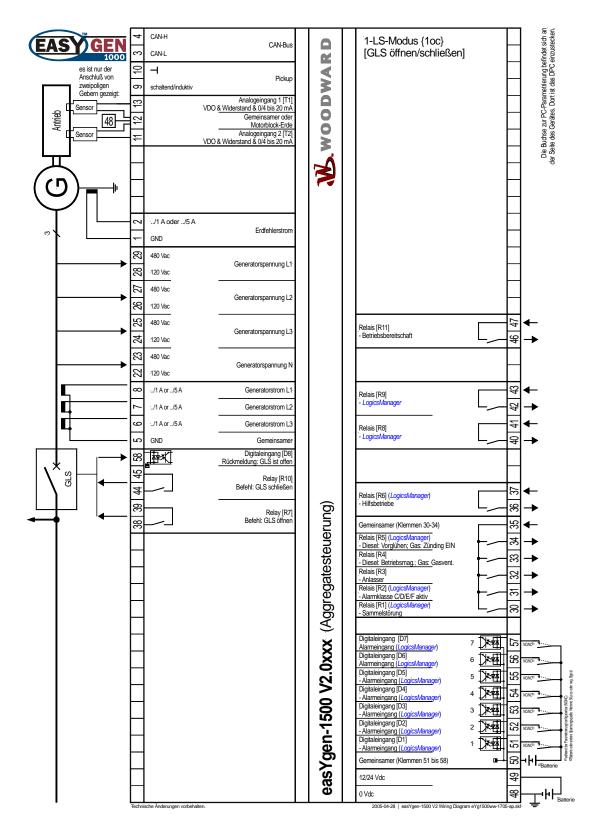


Abbildung 5-4: Klemmenplan - Betriebsmodus {1oc} - 1-LS-Modus

Seite 20/53 © Woodward

Betriebsmodus {2oc}

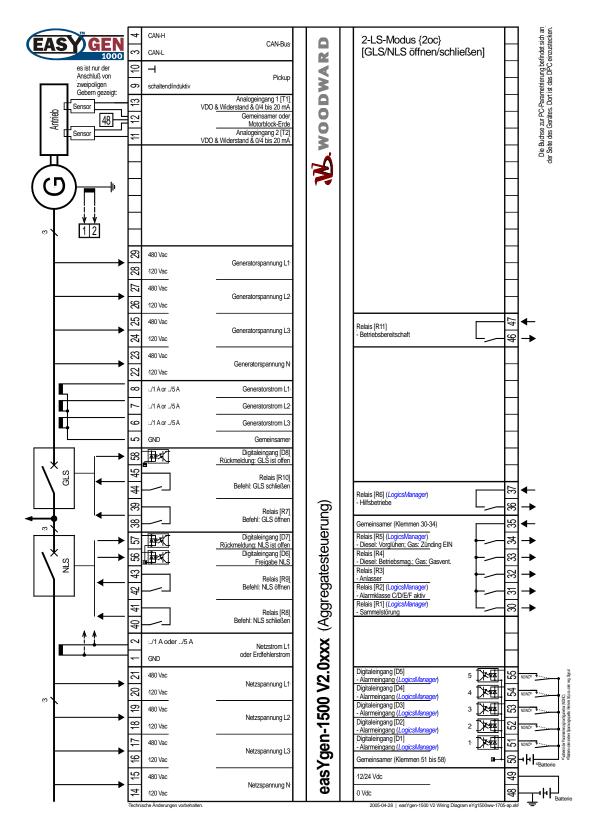


Abbildung 5-5: Klemmenplan - Betriebsmodus {2oc} - 2-LS-Modus

© Woodward Seite 21/53

Kapitel 6. Anschlußklemmen

WARNUNG

Alle in diesem Kapitel angegebenen technischen Daten und Anschlußwerte sind nicht bindend! Es gelten nur die im Kapitel Technische Daten auf Seite 46 angegebenen Werte!

Spannungsversorgung

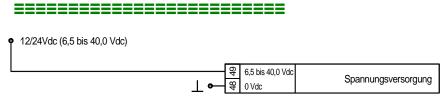


Abbildung 6-1: Spannungsversorgung

Anschließen im Betriebsmodus							
{0} {1o} {1oc} {2oc}							
✓	✓	✓	✓				
1	1	1	1				

Klemme	Bezeichnung	A_{max}
48	0 Vdc Bezugspotential	2,5 mm ²
49	12/24Vdc (6,5 bis 40,0 Vdc), 15 W	2,5 mm ²

Tabelle 6-1: Spannungsversorgung - Klemmenbelegung

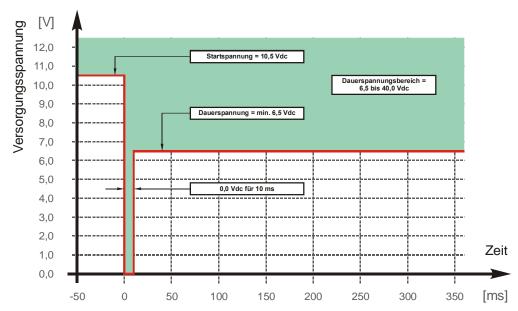


Abbildung 6-2: Spannungsversorgung - max. Spannungseinbruch bei Maximalbelastung

Seite 22/53 © Woodward

Spannungsmessung (FlexRange)

HINWEIS

Schließen Sie NIEMALS beide Meßeingangssätze an! Das easYgen kann keine korrekte Spannungsmessung durchführen, wenn die Eingänge für 120 Vac und 480 Vac gleichzeitig verwendet werden!

Spannungsmessung: Generator

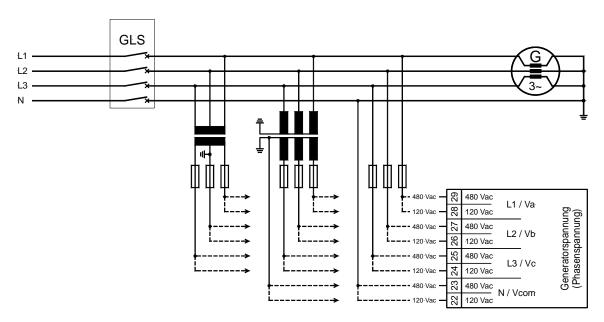


Abbildung 6-3: Spannungsmessung (*FlexRange*) - Generator

Anschl	Anschließen im Betriebsmodus										
{0}	{1o}	{1oc}	{2oc}								
✓	✓	✓	✓								
✓	✓	✓	✓								
✓	✓	✓	✓								
✓	✓	✓	✓								
✓	✓	✓	✓								
✓	✓	✓	✓								
✓	✓	✓	✓								
✓	✓	✓	√								

Klemme	Bezeichnung		A _{max}
22	Generatorspannung - Phase N	120 Vac	2,5 mm ²
23	Generatorspanning - I hase iv	480 Vac	2,5 mm ²
24	Generatorspannung - Phase L3	120 Vac	2,5 mm ²
25	Generatorspanning - Thase E3	480 Vac	2,5 mm ²
26	Generatorspannung - Phase L2	120 Vac	2,5 mm ²
27	Generatorspanning - Fliase L2	480 Vac	2,5 mm ²
28	Generatorspannung - Phase L1	120 Vac	2,5 mm ²
29	Generatorspannung - Friase ET	480 Vac	2,5 mm ²

Tabelle 6-2: Spannungsmessung - Klemmenbelegung - Generatorspannung

© Woodward Seite 23/53

Spannungsmessung: Generator, Parametereinstellung '3Ph 4W' (3-Phasen, 4-Leiter)

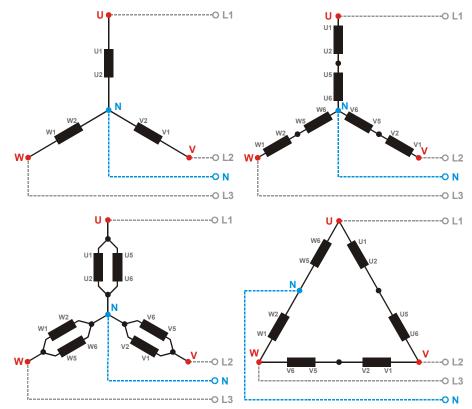


Abbildung 6-4: Spannungsmessung (FlexRange) - Generator, 3Ph 4W

3Ph 4W		Anschlußklemmen								
Nennspannung		120	Vac		480 Vac				1	
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac				1	
easYgen	28	26	24	22	29	27	25	23		
Phase	L1	L2	L3	N	L1	L2	L3	N		

Tabelle 6-3: Spannungsmessung (${\it FlexRange}$) - Klemmenbelegung - Generator, 3Ph 4W

Seite 24/53 © Woodward

Für unterschiedliche Spannungssysteme sind unterschiedliche Anschlußklemmen notwendig. Eine gleichzeitige Verwendung der N-Klemme ist nicht möglich und führt bei Mißachtung zu fehlerhaften Messungen.

Spannungsmessung: Generator, Parametereinstellung '3Ph 3W' (3-Phasen, 3-Leiter)

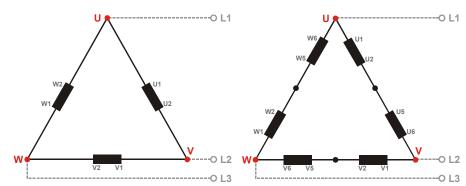


Abbildung 6-5: Spannungsmessung (FlexRange) - Generator, 3Ph 3W

3Ph 3W		Anschlußklemmen									
Nennspannung		120	Vac		480 Vac				2		
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac				2		
easYgen	28	26	24	22	29	27	25	23			
Phase	L1	L2	L3		L1	L2	L3				

Tabelle 6-4: Spannungsmessung (*FlexRange*) - Klemmenbelegung - Generator, 3Ph 3W

© Woodward Seite 25/53

Für unterschiedliche Spannungssysteme sind unterschiedliche Anschlußklemmen notwendig. Eine gleichzeitige Verwendung der N-Klemme ist nicht möglich und führt bei Mißachtung zu fehlerhaften Messungen.

Spannungsmessung: Generator, Parametereinstellung '1Ph 3W' (1-Phase, 3-Leiter)

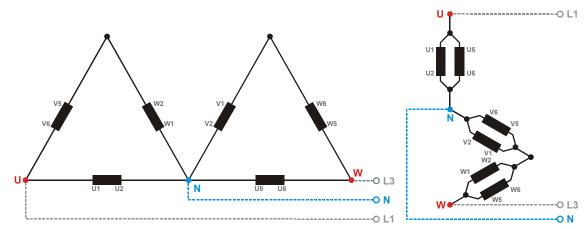


Abbildung 6-6: Spannungsmessung (FlexRange) - Generator, 1Ph 3W

1p-3w		Anschlußklemmen									
Nennspannung		120	Vac		480 Vac				2		
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac			3			
easYgen	28	28 26 24 22				27	25	23			
Phase	L1	N	L3	N	L1	N	L3	N			

Tabelle 6-5: Spannungsmessung (FlexRange) - Klemmenbelegung - Generator, 1Ph 3W

Spannungsmessung: Generator, Parametereinstellung '1Ph 2W' (1-Phase, 2-Leiter)

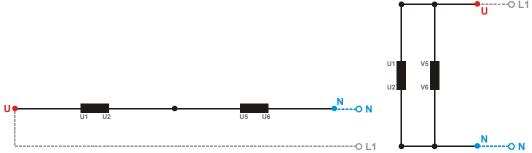


Abbildung 6-7: Spannungsmessung (FlexRange) - Generator, 1Ph 2W

1p-2w		Anschlußklemmen									
Nennspannung		120	Vac			480		2			
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac				3		
easYgen	28	26	24	22	29	27	25	23			
Phase	L1	N	N	N	L1	N	N	N			

Tabelle 6-6: Spannungsmessung (FlexRange) - Klemmenbelegung - Generator, 1Ph 2W

Seite 26/53 © Woodward

Für unterschiedliche Spannungssysteme sind unterschiedliche Anschlußklemmen notwendig. Eine gleichzeitige Verwendung der N-Klemme ist nicht möglich und führt bei Mißachtung zu fehlerhaften Messungen.

Spannungsmessung: Netz

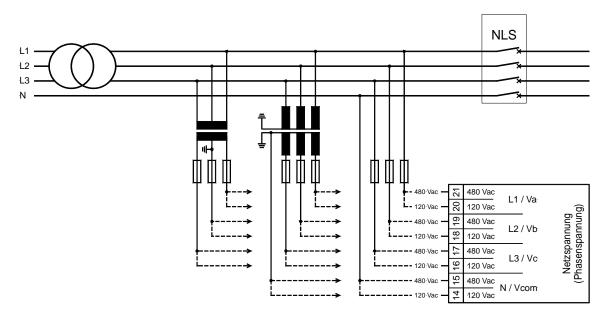


Abbildung 6-8: Spannungsmessung (FlexRange) - Netz

Anschl	ließen im l	Betriebsm	odus
{0}	{1o}	{2oc}	
			✓
			✓
			✓
			✓
			✓
			√
			✓
			✓

Klemme	Bezeichnung		A _{max}
14	Netzspannung - Phase N	120 Vac	2,5 mm ²
15	Netzspannung - I nase N	480 Vac	2,5 mm ²
16	Netzspannung - Phase L3	120 Vac	2,5 mm ²
17	Netzspannung - Fnase L3	480 Vac	2,5 mm ²
18	Netzspannung - Phase L2	120 Vac	2,5 mm ²
19	Netzspannung - Fnase L2	480 Vac	2,5 mm ²
20	Netzspannung - Phase L1	120 Vac	2,5 mm ²
21	Netzspannung - I nase L1	480 Vac	2,5 mm ²

Tabelle 6-7: Spannungsmessung (${\it FlexRange}$) - Klemmenbelegung - Netz

© Woodward Seite 27/53

Spannungsmessung: Netz, Parametereinstellung '3Ph 4W' (3-Phasen, 4-Leiter)

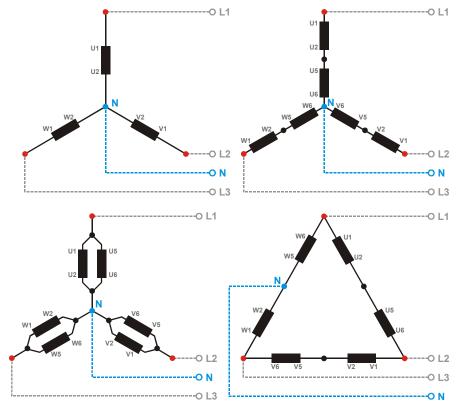


Abbildung 6-9: Spannungsmessung (*FlexRange*) - Netz, 3Ph 4W

3Ph 4W		Anschlußklemmen								
Nennspannung		120	Vac		480 Vac				1	
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac				-	
easYgen	20	18	16	14	21	19	17	15		
Phase	L1	L2	L3	N	L1	L2	L3	N		

Tabelle 6-8: Spannungsmessung (*FlexRange*) - Klemmenbelegung - Netz, 3Ph 4W

Seite 28/53 © Woodward

Für unterschiedliche Spannungssysteme sind unterschiedliche Anschlußklemmen notwendig. Eine gleichzeitige Verwendung der N-Klemme ist nicht möglich und führt bei Mißachtung zu fehlerhaften Messungen.

Spannungsmessung: Netz, Parametereinstellung '3Ph 3W' (3-Phasen, 3-Leiter)

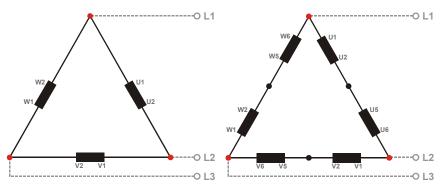


Abbildung 6-10: Spannungsmessung (FlexRange) - Netz, 3Ph 3W

3Ph 3W		Anschlußklemmen									
Nennspannung		120	Vac		480 Vac				5		
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac				3		
easYgen	20	18	16	14	21	19	17	15			
Phase	L1	L2	L3		L1	L2	L3				

Tabelle 6-9: Spannungsmessung (${\it FlexRange}$) - Klemmenbelegung - Netz, 3Ph 3W

© Woodward Seite 29/53

Für unterschiedliche Spannungssysteme sind unterschiedliche Anschlußklemmen notwendig. Eine gleichzeitige Verwendung der N-Klemme ist nicht möglich und führt bei Mißachtung zu fehlerhaften Messungen.

Spannungsmessung: Netz, Parametereinstellung '1Ph 3W' (1-Phase, 3-Leiter)

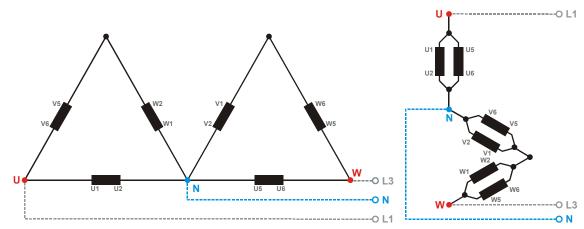


Abbildung 6-11: Spannungsmessung (*FlexRange*) - Netz, 1Ph 3W

1p-3w		Anschlußklemmen									
Nennspannung		120	Vac		480 Vac				6		
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac				O		
easYgen	20	18	16	14	21	19	17	15			
Phase	L1	N	L3	N	L1	N	L3	N			

Tabelle 6-10: Spannungsmessung (FlexRange) - Klemmenbelegung - Netz, 1Ph 3W

Spannungsmessung: Netz, Parametereinstellung '1Ph 2W' (1-Phase, 2-Leiter)

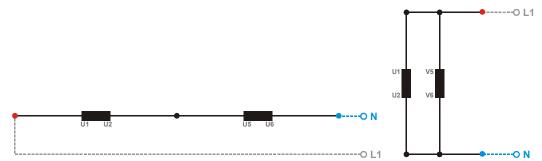


Abbildung 6-12: Spannungsmessung (*FlexRange*) - Netz, 1Ph 2W

1p-2w		Anschlußklemmen									
Nennspannung		120	Vac		480 Vac				6		
Bereich (max.)		0 bis 1	50 Vac		0 bis 600 Vac			O			
easYgen	20	18	16	14	21	19	17	15			
Phase	L1	N	N	N	L1	N	N	N			

Tabelle 6-11: Spannungsmessung (${\it FlexRange}$) - Klemmenbelegung - Netz, 1Ph 2W

Seite 30/53 © Woodward

Für unterschiedliche Spannungssysteme sind unterschiedliche Anschlußklemmen notwendig. Eine gleichzeitige Verwendung der N-Klemme ist nicht möglich und führt bei Mißachtung zu fehlerhaften Messungen.

Strommessung

ACHTUNG

Vor dem Lösen der sekundären Stromwandleranschlüsse und der Anschlüsse des Stromwandlers am Gerät ist darauf zu achten, daß der Stromwandler kurzgeschlossen wird.

Generator

HINWEIS

Verbinden Sie die Anschlußleitungen "I (s)" der Stromwandler möglichst in der Nähe des Gerätes miteinander.

HINWEIS

Stromwandler sind sekundär generell einseitig zu erden.

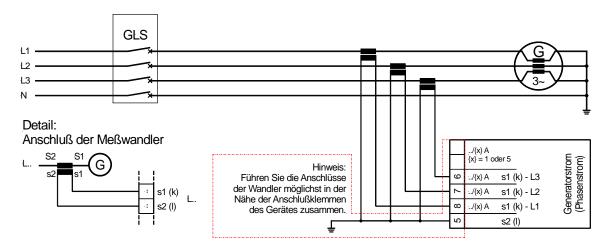


Abbildung 6-13: Strommessung - Generator

Anschließen im Betriebsmodus				
{0}	{1o}	{1oc}	{2oc}	
✓	✓	✓	✓	
✓	✓	✓	✓	
✓	✓	✓	1	
✓	✓	✓	✓	

Klemme	Bezeichnung	A_{max}
5	Generatorstrom - Phasen L1/L2/L3 - Wandlerklemme s2 (1)	2,5 mm ²
6	Generatorstrom - Phase L3 - Wandlerklemme s1 (k)	2,5 mm ²
7	Generatorstrom - Phase L2 - Wandlerklemme s1 (k)	2,5 mm ²
8	Generatorstrom - Phase L1 - Wandlerklemme s1 (k)	2,5 mm ²

 $Tabelle\ 6\mbox{-}12\mbox{:}\ Strommessung\mbox{-}\ Klemmenbelegung\mbox{-}\ Generatorstrom$

© Woodward Seite 31/53

Strommessung: Generator, Parametereinstellung 'L1 L2 L3'

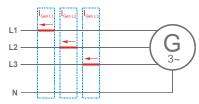


Abbildung 6-14: Strommessung - Generator, L1 L2 L3

L1 L2 L3	Anschlußklemmen				Hinweis
easYgen	8	7	6	5	
Phase	L1	L2	L3	GND	

Tabelle 6-13: Strommessung - Klemmenbelegung - Generator, L1 L2 L3

Strommessung: Generator, Parametereinstellung 'Phase L1', 'Phase L2' & 'Phase L3'

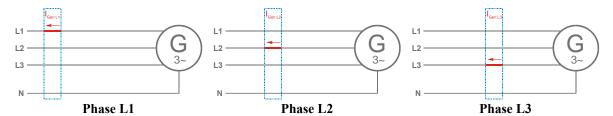


Abbildung 6-15: Strommessung - Generator, Phase Lx

	Anschlußklemmen				Hinweis
Phase L1					
easYgen	8	7	6	5	
Phase	L1			GND	
Phase L2					
easYgen	8	7	6	5	
Phase		L2		GND	
Phase L3					
easYgen	8	7	6	5	
Phase			L3	GND	

Tabelle 6-14: Strommessung - Klemmenbelegung - Generator, Phase $Lx\,$

Seite 32/53 © Woodward

Netzstrom (nur {2oc})

HINWEIS

Stromwandler sind sekundär generell einseitig zu erden.

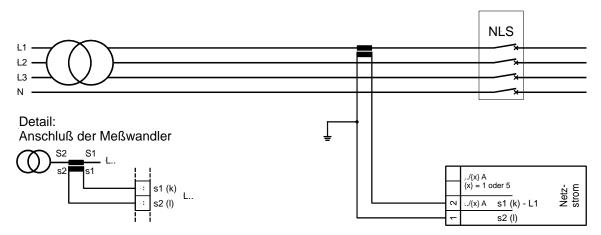


Abbildung 6-16: Strommessung - Netzstrom

Anschließen im Betriebsmodus				
{0}	{1o}	{1oc}	{2oc}	
			☑	
			N	

Klemme	Bezeichnung	A_{max}
1	Netzstrom - Phase L1 - Wandlerklemme s2 (l)	2,5 mm ²
2	Netzstrom - Phase L1 - Wandlerklemme s1 (k)	2,5 mm ²

Tabelle 6-15: Strommessung - Klemmenbelegung - Netzstrom

Strommessung: Netz, Parametereinstellung 'Phase L1', 'Phase L2' & 'Phase L3'

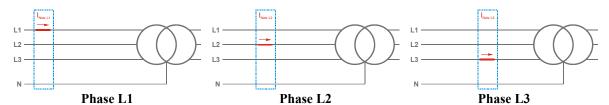


Abbildung 6-17: Strommessung - Generator, Phase Lx

	Anschlußklemmen		Hinweis
Phase L1			
easYgen	1	2	
Phase	GND	L1	
Phase L2			
easYgen	1	2	
Phase	GND	L2	
Phase L3			
easYgen	1	2	
Phase	GND	L3	

Tabelle 6-16: Strommessung - Klemmenbelegung - Generator, Phase $Lx\,$

© Woodward Seite 33/53

Erdstrom

Der Erdstrom kann alternativ zum Netzstrom über den Netzstromeingang gemessen werden. Ob mit diesem Eingang der Netzstrom (Standard) oder der Erdstrom gemessen wird, hängt von der Einstellung des Parameters 'Eingang Netzstrom als' ab. Weitere Informationen dazu finden Sie im Konfigurationshandbuch GR37321.

HINWEIS

Bitte beachten Sie, daß der Einbauort der Erdstromerfassung den Schutzbereich der Erdschlußüberwachung bestimmt.

HINWEIS

Stromwandler sind sekundär generell einseitig zu erden.

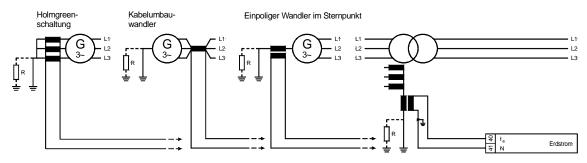


Abbildung 6-18: Strommessung - Erdstrom

Anschließen im Betriebsmodus						
{0}	{1o}	{1o} {1oc} {2oc}				
V	☑	☑	☑			
☑	V	V	V			

Klemme	Bezeichnung	A_{max}
1	Erdstrom - Wandlerklemme s2 (1)	2,5 mm ²
2	Erdstrom - Wandlerklemme s1 (k)	2,5 mm ²

Tabelle 6-17: Strommessung - Klemmenbelegung - Erdstrom

Seite 34/53 © Woodward

Leistungsmessung

Werden die Meßeingänge für Spannungen und Ströme nach dem dargestellten Anschlußbild verdrahtet, ergeben sich die folgenden Anzeigewerte.

HINWEIS

Der Wert der Blindleistungsmessung ist nur für symmetrische System gültig.

Betriebsmodus	Wert	Beschreibung	Vorzeichen
{BM}-{1o}-{1oc}-{2oc}	Generatorwirkleistung	Lieferung von kW	Positiv
$\{BM\}-\{1o\}-\{1oc\}-\{2oc\}$	Generatorwirkleistung	Bezug von kW	Negativ
{BM}-{1o}-{1oc}-{2oc}	Generatorleistungsfaktor cos φ	Induktiv	Positiv
${BM}-{1o}-{1oc}-{2oc}$	Generatorleistungsfaktor cos φ	Kapazitiv	Negativ
${BM}-{1o}-{1oc}-{2oc}$	Netzwirkleistung	Lieferung von kW	Positiv
${BM}-{1o}-{1oc}-{2oc}$	Netzwirkleistung	Bezug von kW	Negativ
{BM}-{1o}-{1oc}-{2oc}	Netzleistungsfaktor cos φ	Lieferung von kvar's	Positiv
{BM}-{1o}-{1oc}-{2oc}	Netzleistungsfaktor cos φ	Bezug von kvar's	Negativ

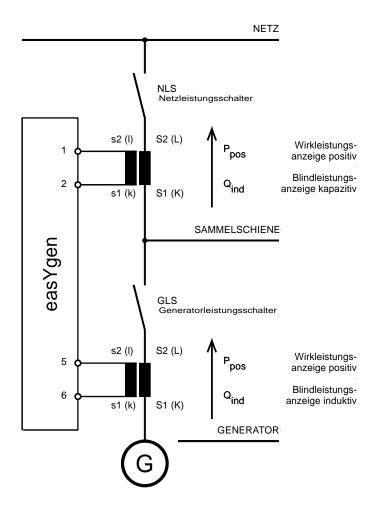


Abbildung 6-19: Leistungsmessung - Leistungsrichtung

© Woodward Seite 35/53

Pickup

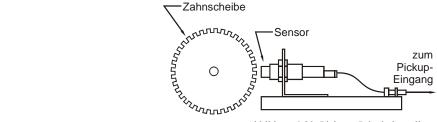


Abbildung 6-20: Pickup - Prinzipdarstellung

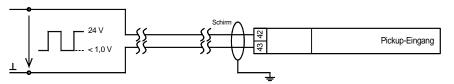


Abbildung 6-21: Pickup-Eingang

Anschließen im Betriebsmodus					
{0}	{1o} {1oc} {2oc}				
✓	1	✓	✓		
✓	✓	\	✓		

Klemme	Bezeichnung	A_{max}
9	Pickup-Eingang schaltend/induktiv	2,5 mm ²
10	GND	2,5 mm ²

Tabelle 6-18: Pickup - Klemmenbelegung

HINWEIS

Die Zähnezahl der Zahnscheibe muß abhängig von der Drehzahl so gewählt werden, daß die Eingangsfrequenz des Pickup maximal 14 kHz beträgt.

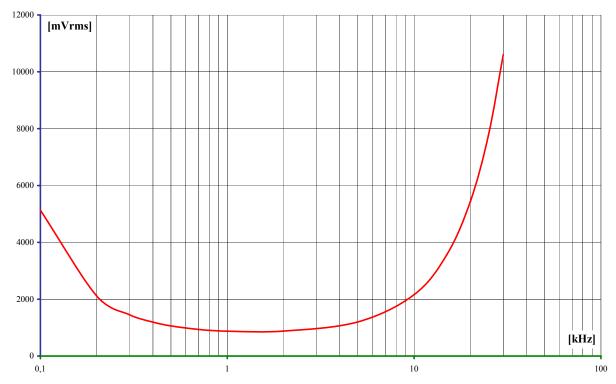


Abbildung 6-22: Minimal notwendige Eingangsspannung in Abhängigkeit der Frequenz

Seite 36/53 © Woodward

Digitaleingänge

Digitaleingänge: Bipolare Signale

Die Digitaleingänge sind galvanisch getrennt und ermöglichen eine bipolare Beschaltung. Die Digitaleingänge können Signale mit positivem oder negativem Potential verarbeiten.

HINWEIS

Alle Digitaleingänge müssen dieselbe Polarität verwenden, entweder positive oder negative Signale, da sie sich einen gemeinsamen Masseanschluß teilen.

Digitaleingänge: positive / negative Signale

_		
GND	51 50	Digitaleingang 1
6,540,0 Vdc •		Digitaleingang 2
6,540,0 Vdc •	8	Digitaleingang 3
6,540,0 Vdc •	45	Digitaleingang 4
6,540,0 Vdc •	22	Digitaleingang 5
6,540,0 Vdc •	95	Digitaleingang 6
6,540,0 Vdc •	25	Digitaleingang 7
6,540,0 Vdc •	83	Digitaleingang 8

Abbildung 6-23: Digitaleingänge - Alarm-/Steuereingang - positives Signal

6,540,0 Vdc ◆ GND ⊥ ◆	21 20	Digitaleingang 1
GND ⊥ •——	22	Digitaleingang 2
GND ⊥ •——	<u>₩</u>	Digitaleingang 3
GND	<u>4</u>	Digitaleingang 4
GND \perp	222	Digitaleingang 5
GND ⊥ •	299	Digitaleingang 6
GND	22	Digitaleingang 7
GND	- 28 - 28 - 28 - 28 - 28 - 28 - 28 - 28	Digitaleingang 8

Abbildung 6-24: Digitaleingänge - Alarm-/Steuereingang - negatives Signal

© Woodward Seite 37/53

Anschl	ließen im l	Betriebsm	odus														
[BM]	[0CB]	[1CB]	[2CB]	Kle	mme	Beschreibung				A_{max}							
				Gem.	Signal				Тур ↓								
							[BM] -										
/	1	1	1		51	Digitaleingang [D1]	[0CB] -	Alarmeingang (programmier-	SW	2,5 mm ²							
*		•			31	Digitalenigang [D1]	[1CB] -	bar)	511	2,3 11111							
							[2CB] -										
							[BM] -										
/	1	1	1		52	Digitaleingang [D2]	[0CB] -	Alarmeingang (programmier-	SW	2,5 mm ²							
*		•			32	Digitalenigalig [D2]	[1CB] -	bar)	511	2,3 11111							
							[2CB] -										
							[BM] -										
1	1	1	1		53	Digitaleingang [D3]	[0CB] -	Alarmeingang (programmier-	SW	2,5 mm ²							
*		•			33	Digitalenigang [D3]	[1CB] -	bar)	511	2,3 11111							
							[2CB] -										
							[BM] -										
/	1	1	1		54	Digitaleingang [D4]	[0CB] -	Alarmeingang (programmier-	SW	2,5 mm ²							
			,		34	5.							Digitalenigang [D+]	[1CB] -	bar.)	511	2,3 11111
				50			[2CB] -										
				30			[BM] -										
1	1	1	1		55	Digitaleingang [D5]	[0CB] -		SW	2,5 mm ²							
						Digitalenigang [De]	[1CB] -	bar)	~	2,0 11111							
							[2CB] -										
							[BM] -	Alarmeingang (programm.)	SW								
1	1	1	1		56	Digitaleingang [D6]	[0CB] -	Alarmeingang (programm.)	SW	2,5 mm ²							
					30	Digitalenigang [Do]	[1CB] -	Alarmeingang (programm.)	SW	2,3 11111							
							[2CB] -	Freigabe NLS	#1								
							[BM] -	Alarmeingang (programm.)	SW								
1	1	1	1		57	Digitaleingang [D7]	[0CB] -	Alarmeingang (programm.)	SW	2,5 mm ²							
						Digitalenigang [D7]	[1CB] -	Alarmeingang (programm.)	SW	2,0 11111							
							[2CB] -	Rückmeldung: NLS ist offen	#2								
							[BM] -	Alarmeingang (programm.)	SW								
/	1	1	1		58	Digitaleingang [D8]	[0CB] -	Alarmeingang (programm.)	SW	2,5 mm ²							
						2.5	[1CB] -	Rückmeldung: GLS ist offen	#2	-,5 11111							
							[2CB] -	Rückmeldung: GLS ist offen	#2								

(programm.)..parametrierbar, SW..Umschaltbar über die Software, [#1]..Typ 1 (Arbeitsstrom/Schließer), [#2]..Typ 2 (Ruhestrom/Öffner)

Tabelle 6-19: Digitaleingänge - Klemmenbelegung - Alarm-/Steuereingänge

Digitaleingänge: Arbeitslogik

Digitaleingänge können als Arbeitsstrom (Schließer / N.O.) oder Ruhestrom (Öffner / N.C.) parametriert werden. Bei Arbeitsstrom liegt im normalen Betrieb kein Potential an. Im Falle eines Alarms oder einer Ansteuerung wird der Eingang Unter Spannung gesetzt. Bei Ruhestrom liegt im normalen Betrieb ein ununterbrochenes Potential an. Im Falle eines Alarms oder einer Ansteuerung fällt das Potential am Eingang ab.

Die Signalgeber für Arbeitsstrom (Schließer / N.O.) oder Ruhestrom (Öffner / N.C.) können sowohl an der Signalklemme, als auch an der Masseklemme des Digitaleingangs angeschlossen werden. Weitere Informationen dazu finden Sie im vorhergehenden Abschnitt Digitaleingänge: Bipolare Signal auf Seite 37.

Abbildung 6-25: Digitaleingänge - Alarm-/Steuereingänge - Arbeitslogik

Seite 38/53 © Woodward

Relaisausgänge (Steuerausgänge und *LogicsManager*)

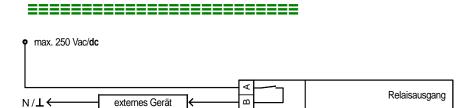


Abbildung 6-26: Relaisausgänge

Ansch	ließen im	Betriebsm	odus						
{0}	{1o}	{1oc}	{2oc}	Kle Kl.	emme Gem.	Bezeichnung	Bezeichnung		
				A	В	Form A, gemeinsame	r Kontakt	Тур ↓	
✓	✓	✓	✓	30		Relaisausgang [R1]	- {0} - 10} - 10c} - 20c} - LogicsManager	SW SW SW	2,5 mm ²
✓	✓	✓	~	31		Relaisausgang [R2]	- \{\) \{\) \{\) \} - \ \{\) \} \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \} \ \{\) \ \{\) \ \{\) \} \ \{\) \ \{\) \ \{\) \} \ \{\) \ \{\) \ \{\) \ \{\) \} \ \{\) \ \{\) \ \{\) \ \{\) \ \{\) \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	SW SW SW	2,5 mm²
✓	*	✓	~	32	35	Relaisausgang [R3]	{0} - {10} - {1oc} - {2oc} -	SW SW SW	2,5 mm²
✓	~	~	~	33		Relaisausgang [R4]		SW SW SW	2,5 mm²
✓	✓	✓	✓	34		Relaisausgang [R5]	{10} - {10} - {10c} - {20c} -	SW SW SW	2,5 mm ²

LogicsManager..über die Funktion LogicsManager lassen sich diese Relais frei programmieren SW..Umschaltbar über die Software, [#1]..Typ 1 (Arbeitsstrom/Schließer)

Tabelle 6-20: Relaisausgänge - Klemmenbelegung, Teil 1

© Woodward Seite 39/53

Ansch	ließen im l	Betriebsm	odus						
{0}	{1o}	{1oc}	{2oc}	Kl Kl.	Gem.	Bezeichnung			A _{max}
				A	В	Form A, separate Kor	ntakte	Тур ↓	
✓	✓	✓	✓	36	37	Relaisausgang [R6]	{0} - {10} - {1oc} - {2oc} -	SW SW SW	2,5 mm²
√	1	✓	✓	38	39	Relaisausgang [R7]	{0} - LogicsManager {10} - Befehl: GLS öffnen {10c} - Befehl: GLS öffnen {20c} - Befehl: GLS öffnen	SW #1 #1 #1	2,5 mm ²
✓	1	1	1	40	41	Relaisausgang [R8]	{0} - LogicsManager {10} - LogicsManager {10c} - LogicsManager {20c} - Befehl: NLS schließen	SW SW SW #1	2,5 mm
✓	1	✓	*	42	43	Relaisausgang [R9]	{0} - LogicsManager {10} - LogicsManager {10c} - LogicsManager {20c} - Befehl: NLS öffnen	SW SW SW #1	2,5 mm
✓	1	✓	*	44	45	Relaisausgang [R10]	{0} - LogicsManager {10} - LogicsManager {10c} - Befehl: GLS schließen {20c} - Befehl: GLS schließen	SW SW #1 #1	2,5 mm
✓	1	✓	✓	46	47	Relaisausgang [R11]	{10} - Betriebsbereitschaft {10} - LogicsManager {10c} - (im normalen Betriebszustan geschlossen)	d #1	2,5 mm

LogicsManager..über die Funktion LogicsManager lassen sich diese Relais frei programmieren SW..Umschaltbar über die Software, [#1]..Typ 1 (Arbeitsstrom/Schließer)

Tabelle 6-21: Relaisausgänge - Klemmenbelegung, Teil 2

Seite 40/53 © Woodward

Analogeingänge (FlexIn)

Es wird die Verwendung zweipoliger Geber empfohlen. Dabei wird eine Genauigkeit von ≤ 1% erreicht.

Anschluß zweipoliger Geber

HINWEIS

Verwenden Sie bitte massefreie (2polige) VDO-Sensoren, die über eine isolierte Rückleitung auf die gemeinsame Masse des easYgen-1500 (Klemme 12) aufgelegt werden, um genaue Meßergebnisse zu erhalten. Dabei sollten die Rückleitungen erst an den Anschlußklemmen des easYgen miteinander verbunden werden. Die Klemme 12 ist mit dem geerdeten Batteriemasseanschluß (Klemme 48) zu verbinden.

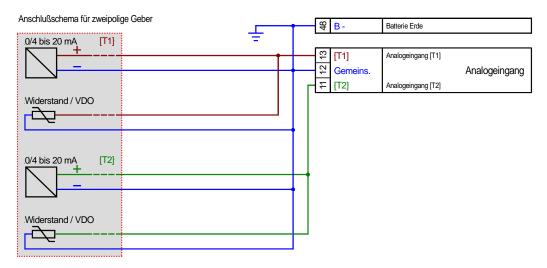


Abbildung 6-27: Analogeingänge (FlexIn) - Anschluß zweipoliger Geber

Ansch	ließen im	Betriebsm	odus			
{0}	{1o}	{1oc}	{2oc}	Klemme	Bezeichnung	A _{max}
✓	✓	✓	✓	13	Analogeingang [T1], wahlweise folgende Sensoren: - 0/4 bis 20 mA - Widerstand - VDO, 0 bis 180 Ohm#VDO - VDO, 0 bis 380 Ohm#VDO	2,5 mm ²
✓	✓	✓	✓	12	Gemeinsamer, verbunden mit Batterie-Erde (Klemme 48)	2,5 mm ²
✓	✓	✓	*	11	Analogeingang [T2], wahlweise folgende Sensoren: - 0/4 bis 20 mA - Widerstand - VDO, 0 bis 180 Ohm ^{#VDO} - VDO, 0 bis 380 Ohm ^{#VDO}	2,5 mm ²

#VDO - Einen Katalog aller VDO-Sensoren können Sie auf der VDO-Homepage herunterladen (http://www.vdo.de/siemens)

Tabelle 6-22: Analogeingänge (FlexIn) - Klemmenbelegung - Anschluß zweipoliger Geber

© Woodward Seite 41/53

Anschluß einpoliger Geber und Kombination ein- und zweipoliger Geber

Bei der Verwendung von einpoligen Gebern wird eine Genauigkeit von $\leq 2,5\%$ erreicht. Eine Kombination von ein- und zweipoligen Gebern ist möglich, dabei wird jedoch auch mit den zweipoligen Gebern nur eine Genauigkeit von $\leq 2,5\%$ erreicht. Die angegebene Genauigkeit von $\leq 2,5\%$ für einpolige Geber wird nur erreicht, wenn die Differenzspannung zwischen Motorblock-Erde und Batterie-Erde nicht mehr als ± 1 - 2V beträgt.

Anschlußschema für einpolige Geber

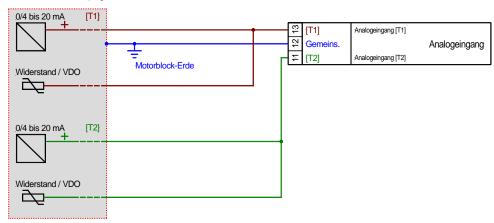


Abbildung 6-28: Analogeingänge (FlexIn) - Anschluß einpoliger Geber

Anschlußschema für eine Kombination aus ein- und zweipoligen Gebern

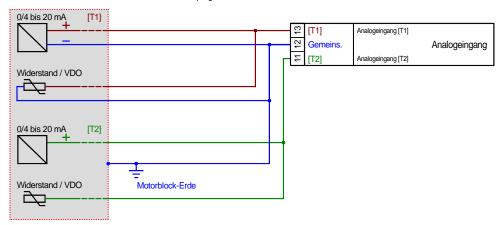


Abbildung 6-29: Analogeingänge (FlexIn) - Kombinierter Anschluß ein- und zweipoliger Geber

Anschl	ließen im	Betriebsm	odus			
{0}	{1o}	{1oc}	{2oc}	Klemme	e Bezeichnung	A_{max}
✓	✓	1	✓	13	Analogeingang [T1], wahlweise folgende Sensoren: - 0/4 bis 20 mA - Widerstand - VDO, 0 bis 180 Ohm ^{#VDO} - VDO, 0 bis 380 Ohm ^{#VDO}	2,5 mm²
✓	✓	✓	✓	12	Gemeinsamer, verbunden mit Motorblock-Erde	2,5 mm ²
✓	✓	✓	✓	11	Analogeingang [T2], wahlweise folgende Sensoren: - 0/4 bis 20 mA - Widerstand - VDO, 0 bis 180 Ohm ^{#VDO} - VDO, 0 bis 380 Ohm ^{#VDO}	2,5 mm²

#VDO - Einen Katalog aller VDO-Sensoren können Sie auf der VDO-Homepage herunterladen (http://www.vdo.de/siemens)

Tabelle 6-23: Analogeingänge (${\it FlexIn}$) - Klemmenbelegung - Anschluß einpoliger Geber

Seite 42/53 © Woodward

Schnittstellen

Übersicht

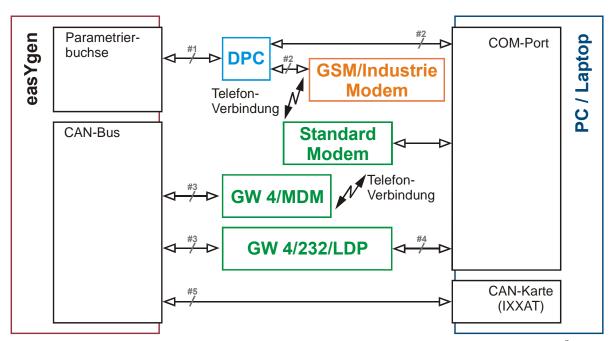


Abbildung 6-30: Schnittstellen - Übersicht

Nr.	Verbindung zwischen			
	von		nach	
#1	easYgen [DPC-Buchse]		DPC	
#2	DPC		PC [COM-Po	rt]
	PIN 1			PIN 4 (Brücke mit PIN 8)
	PIN 2			PIN 3
	PIN 3			PIN 2
	PIN 4			PIN 1
	PIN 5			PIN 5
	N/A			N/A
	PIN 7			PIN 8 (Brücke mit PIN 4)
	PIN 8			PIN 7
	PIN 9			PIN 9
			Brücke zwisc	hen PIN4/8
#3	easYgen [CAN-Klemmen]		GW 4 [CAN-	Klemmen]
	Klemme 3 - CAN-L			Klemme X5 - CAN-L
	Klemme 4 - CAN-H			Klemme X4 - CAN-H
#4	GW 4 [RS-232-Klemmen]		PC [COM-Po	rt, Submin-D, 9polig, weiblich]
	Klemme Y1 - RxD			PIN 3 - TxD
	Klemme Y2 - RTS			PIN 8 - CTS
	Klemme Y3 - GND			PIN 5 - GND
	Klemme Y4 - CTS			PIN 7 - RTS
	Klemme Y5 - TxD			PIN 3 - RxD
#5	easYgen [CAN-Klemmen]		DC [CAN Dos	rt, Submin-D, 9polig, weiblich]
#3	Klemme 3 - CAN-L			PIN 7 - CAN-H
	Klemme 4 - CAN-H			PIN 7 - CAN-H PIN 2 - CAN-L
			CAN-Abschlu	
			zwischen Kle	
	zwischen	Kiemmen 3/4	zwischen Kle	mmen 2//

Tabelle 6-24: Schnittstellen - Verbindungsübersicht

© Woodward Seite 43/53

CAN-Bus (FlexCAN)

Anschluß

Abbildung 6-31: Schnittstellen - CAN-Bus (FlexCAN)

Anschließen im Betriebsmodus						
{0}	{1o}	{1oc}	{2oc}			
✓	✓	✓	✓			
✓	✓	✓	✓			

Klemme	Bezeichnung	A_{max}
3	CAN-Bus (FlexCAN) CAN-L	2,5 mm ²
4	CAN-H	2,5 mm ²

Abschirmung

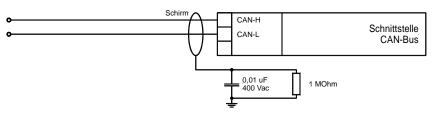


Abbildung 6-32: Schnittstellen - CAN-Bus - Schirmanschluß

HINWEIS

Bitte beachten Sie, daß der CAN-Bus mit einem Widerstand, der dem Wellenwiderstand des Kabels entspricht (z. B. 120 Ohm) an beiden Enden abgeschlossen werden muß. Der Abschlußwiderstand wird zwischen CAN-H und CAN-L angebracht.

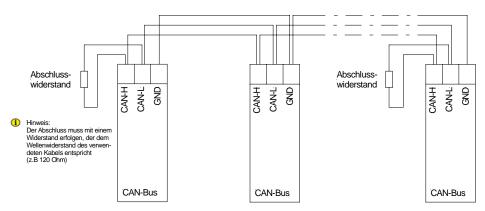


Abbildung 6-33: Schnittstellen - CAN-Bus - Abschlußwiderstand

Seite 44/53 © Woodward

DPC - Direktparametrierung

HINWEIS

Eine Parametrierung mittels des Direktparametrierkabels DPC (Produktnummer 5417-557) ist möglich. Sie benötigen dazu einen PC/Laptop, das DPC-Kabel, das Programm LeoPC1 ab Version 3.1.1 (auf der mit dieser Aggregatesteuerung gelieferten CD enthalten) und die richtigen Konfigurationsdateien.

HINWEIS

Für den Anschluß des DPC muß die mitgelieferte Anschlußleitung zwischen DPC und easYgen verwendet werden, um eine korrekte Funktionsweise des easYgen sicherzustellen. Die Verlängerung oder die Verwendung eines anderen Kabeltyps für die Verbindung zwischen easYgen und DPC kann zu Funktionsstörungen des easYgen führen. Diese können unter Umständen Teile der Anlage beschädigen. Sollte eine Verlängerung der Datenverbindungsleitung notwendig sein, darf nur die serielle Leitung (RS-232) zwischen DPC und Laptop/PC verlängert werden. Dazu sollte unbedingt ein Kabel für den Industrieeinsatz verwendet werden.

HINWEIS

Für einen Dauerbetrieb mit dem Direktparametrierkabel DPC (z.B. Fernsteuerung des easYgen) ist mindestens die Revision F (Produktnummer 5417-557 Rev. F) des DPC notwendig. Bei der Verwendung eines DPCs einer früheren Revision können Probleme im Dauerbetrieb auftreten. Außerdem sollte für den Dauerbetrieb ein serielles (RS-232) Kabel für den Industrieeinsatz für die Verbindung zwischen DPC und Laptop/PC verwendet werden. Der am DPC ab Revision F (Produktnummer 5417-557 Rev. F) vorhandene Schirmanschluß (6,3mm Flachstecker) muß mit der Erde verbunden werden.

© Woodward Seite 45/53

Kapitel 7. Technische Daten

Typenschild		
The No. 12345678 Company Compa	1 S/N 2 S/N 3 S/N 4 P/N 5 REV 6 Deta 7 Typ 8 Typ 9 UL	
Meßgrößen, Spannung		
- Meßspannungen	Nennwert (Un) Maximalwert (U Bemessungsspan Bemessungsstoß [5] 480 Vac (Kle Nennwert (Un) Maximalwert (U Bemessungsspan	emmen 22/24/26/28 & 14/16/18/20)
	Bemessungsstoß	spannung 4 kV
*		50/60 Hz (40,0 bis 70,0 Hz)
<u> </u>		
		[1] 0,498 MΩ, [5] 2,0 MΩ < 0,15 W
-		
Meßgrößen, Ströme	[/1] Nennwert (In)
- Genaujokeit		Klasse 1
Linearer Meßbereich	Generator (Klem	men 5-8)
- Maximale Leistungsaufnahme p		< 0,15 VA
- Bemessungskurzzeitstrom (1 s)		50,0 × In 10,0 × In
Umgebungsgrößen		
- Spannungsversorgung	M	
		2

Seite 46/53

Digitaleingänge		
- Eingangsbereich (U _{Cont, digital input})	Nennsp	pannung 12/24 Vdc (6,5 bis 40,0 Vdc)
- Eingangswiderstand		ca. 6,7 kΩ
Relaisausgänge		potentialfrei
- Kontaktmaterial		AgCdO
- Belastung (GP) (U _{Cont, relay output})		Ç
<u> </u>	AC	2,00 Aac@250 Vac
	DC	2,00 Adc@24 Vdc
		0,36 Adc@125 Vdc
		0,18 Adc@250 Vdc
- Induktive Belastung (PD) (U _{Cont,}	relay output)	
2 () () ()		B300
	DC	1,00 Adc@24 Vdc
		0,22 Adc@125 Vdc
		0,10 Adc@250 Vdc
Analogeingänge		frei skalierbar
0 0 0		10 Bit
		Bürde ca 50 Ω
		Geberstrom ≤ 2,3 mA
- Genauigkeit		ber≤ 1%
5 8		≤2,5%
Pickup Eingang		kapazitiv entkoppelt
		min. ca. 17 k Ω
		siehe Abbildung 6-22

© Woodward Seite 47/53

Schnittstell	le	
	rvice-Schnittstelle	2000
- 818	gnaipegei	
CA	AN-Bus-Schnittstelle	galvanisch getrennt
		1.500 Vdc
		CAN-Bus
- Int	terner Leitungsabschlu	ß
		ohne Spannungsversorgung)ca. 5 Jahrenicht möglich
Gehäuse		
- Ty	тр	APRANORM DIN 43 700
		Γ)
- An	ոschluß	Schraub-Steck-Klemmen 2,5 mm ²
- En	npfohlenes Anzugsmoi	ment
		benutzen Sie ausschließlich 60/75 °C Kupferanschlußleitungen
		benutzen Sie ausschließlich Klasse 1-Kabel (oder ähnliches)
- Ge	ewicht	ca. 800 g
Schutz		
- Sc	hutzart	IP42 von vorne bei fachgerechtem Einbau
	11412411	IP54 von vorne mit Dichtung (Dichtung: P/N 8923-1043)
		IP20 von hinten
- Fra	ontfolie	isolierende Fläche
		geprüft nach geltenden EN-Richtlinien
		UL-/cUL-Listed, Ordinary Locations, File No.: 231544
	•	

Seite 48/53 © Woodward

Kapitel 8. Umgebungsbedingungen

Dyna	mik		
	- Frequenzbereich - Sinusablenku	ng	5Hz bis 150Hz
	- Beschleunigung		4G
	- Frequenzbereich - Random		10Hz bis 500Hz
	- Energiedichte		0,015G ² /Hz
	- RMS Wert		1,04 Grms
	- Normen		
		EN 60255-21-1 (EN 60068-2-6, Fc)	
		EN 60255-21-3	
		Lloyd's Register, Vibration Test2	
		SAEJ1455 Chasis Data	
		MIL-STD 810F, M514.5A, Cat.4,	
		Truck/Trailer tracked-restrained	
		cargo, Fig. 514.5-C1	
C4 - 0			
Stop			azahnimpula 11ma
		40G, Sag	± ′
	- Normen	EN 60255-21-2	
		MIL-STD 810F, M516.5, Procedure	1
		WILE-STD 8101, WIS10.5, 110cedule	L
Temp	oeratur		
		-30°C (-22	
		20°C (-4°	
	- Normen		
		IEC 60068-2-2, Test Bb und Bd	
		IEC 60068-2-1, Test Ab und Ad	
Luftf	euchtigkeit		
		60°C	C, 95% RH, 5 Tage
			, ,
		IEC 60068-2-30, Test Db	
	TT 1 1 4 .		
Mari			
	- Det Norske Veritas (DNV)		
		Temperature Class:	
		Vibration Class:	
	a	Humidity Class:	
		Env	
	- Lloyd's Register of Shinning (I)	RS) FNV1 FNV2	\pm FNV3 and FNV4

© Woodward Seite 49/53

Kapitel 9. Genauigkeiten

Meßgröße		Anzeige	Genauigkeit	Bemerkung
Frequenz				
Generator	f_{L1N} , f_{L2N} , f_{L3N}	15,0 bis 85,0 Hz	1 %	-
Netz	f_{L1N} , f_{L2N} , f_{L3N}	40,0 bis 85,0 Hz	1 %	-
Spannung				
Generator	U_{L1N} , U_{L2N} , U_{L3N} ,	0 bis 650 kV	1 %	Wandlerverhältnis einstellbar
Netz	$U_{L1N}, U_{L2N}, U_{L3N},$	0 bis 650 kV	1 %	Wandlerverhältnis einstellbar
Strom				
Generator	I_{L1}, I_{L2}, I_{L3}	0 bis 32.000 A	1 %	-
Maximalwert	I_{L1}, I_{L2}, I_{L3}	0 bis 32.000 A	1 %	Schleppzeiger
Netz/Erdstrom	I_{L1}	0 bis 32.000 A	1 %	-
Wirkleistung				
Gesamtwirkleistungsistwert		-2 bis 2 GW	2 %	-
Blindleistung				
Istwert in L1, L2, L3		-2 bis 2 Gvar	2 %	-
cos φ				
Istwert cos φL1		i0,00 - 1,00 - k0,00	2 %	-
Sonstiges				
Wirkarbeit		0 bis 4.200 GWh		nicht PTB geeicht
Betriebsstunden		$4 \times 10^{9} \text{ h}$		-
Wartungsaufruf		0 bis 9.999 h		-
Startzähler		0 bis 65.535		-
Batteriespannung		6,5 bis 40 V	1 %	-
Pickup Drehzahl		f_N +/- 40 %		-
Analogeingänge				
0 bis 180 Ohm		frei skalierbar	*	für VDO-Geber
0 bis 360 Ohm		frei skalierbar	*	für VDO-Geber
PTC		frei skalierbar	*	-
0/4 bis 20 mA		frei skalierbar	*	-

^{* 1%} für zweipolige Geber;2,5% für einpolige Geber und eine Kombination aus ein- und zweipoligen Gebern

Referenzbedingungen (zur Messung der Genauigkeit):

- Eingangsspannung sinusförmige Nennspannung
- Eingangsstrom..... sinusförmiger Nennstrom
- Frequenz..... Nennfrequenz +/- 2 %
- Versorgungsspannung...... Nennspannung +/- 2 %
- Umgebungstemperatur............. 23 °C +/- 2 K

Seite 50/53 © Woodward

Kapitel 10. Konformitätserklärung

Declaration of Conformity

Type: easYgen-1000 Series

Manufacturer

Woodward Governor Company Leonhard-Reglerbau GmbH

Handwerkstrasse 29 70565 Stuttgart - Germany

Tel: +49 (711) 789 54-0 Fax: +49 (711) 789 54-100

E-mail: sales-stuttgart@woodward.com

Type

easYgen-1000 Series

Model: [easYgen-1100, easYgen-1200, easYgen-1400, easYgen-1500]

Product description

Microprocessor driven engine and generator control with integrated monitoring, protection, and control

The named product fulfills the following directives of the European Community:

73/23/EEC Low Voltage Switchgear Directive

Council directive on the harmonization of the laws of member state relating to electrical equipment designed for use within certain voltage limits

89/336/EEC Electromagnetic Compatibility Directive

Council directive on the approximation of the laws of the member states relating to electromagnetic compatibility"

The conformity of the indicated product with the essential safety requirements of the standards is proven by the strict observation of the directives mentioned.

The company Woodward Governor Company Leonhard-Reglerbau GmbH, Handwerkstrasse 29, 70565 Stuttgart, Germany, has checked the product and provided it with the opposite indicated sign.

Gerd Zoellmer (Chief R+D Mai

70565 Stuttgart, August 18, 2003

Druck/Printed 18.08.2003

SolitePage 1 void 1 C:\DOKUME=1\mkochLOKALE~1\TempleasYgen-1000 - Declaration of Conformity 2003-08-18 doc

@ Woodward Governor Company Leonhard-Reglerbau GmbH Stuttgart +49 (0) 711 789 54-0

Declaration of Conformity

Type: easYgen-1000 Series

European Nor	m German Norm	VDE Classification	Description
73/23/EEC -	Low Voltage Switchg	ear Directive	
EN 50178	DIN EN 50178 Edition: 1998-04	VDE 0160	Electronic equipment for use in electrical power installations and their assembly into electrical power installations

89/336/EEC - Electromagnetic Compatibility Directive				
EN 50081-2	DIN EN 50081-2 Edition: 1994-09	VDE 0839 Part 81-2	Electromagnetic compatibility (EMC) Generic emission standard Part 2: Industrial environment	
EN 61000-6-2	DIN EN 61000-6-2 Edition: 2002-08	VDE 0839 Part 6-2	Electromagnetic compatibility (EMC); Part 2: Environment Section 6: Assessment of the emission levels in the power supply of industrial plants as regards low- frequency conducted disturbances	
EN 61000-4-2	DIN EN 61000-4-2 Edition: 2001-12	VDE 0847 Part 4-2	Electromagnetic compatibility (EMC) Part 4: Testing and measuring techniques Section 2: Electrostatic discharge immunity test	
EN 61000-4-3	DIN EN 61000-4-3 Edition: 2001-12	VDE 0847 Part 3	Electromagnetic compatibility (EMC) Basic Immunity Standard Part 4-3: Radiated, radio-frequency electromagnetic field – immunity test.	
EN 61000-4-4	DIN EN 61000-4-4 Edition: 2002-07	VDE 0847 Part 4-4	Electromagnetic compatibility (EMC) Part 4: Testing and measuring techniques Section 4: Electrical fast transient/burst immunity test	
EN 61000-4-5	DIN EN 61000-4-5 Edition: 2001-12	VDE 0847 Part 4-5	Electromagnetic compatibility (EMC) Part 4: Testing and measuring techniques Section 5: Surge immunity test	
EN 61000-4-6	DIN EN 61000-4-6 Edition: 2001-12	VDE 0843 Part 4-6	Electromagnetic compatibility Basic immunity standard Part 6: Immunity to conducted disturbances, induced by radio frequency fields	
EN 55011	DIN EN 55011 Edition: 2000-05	VDE 0875 Part 11	Suppression of radio disturbances caused by electrical appliances and systems; Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment	

Druck/Printed 18.08.2003
Seite/Page 2 vonid 2
C:DOKUME=1\mkochiLOKALE~1\TempleasYgen-1000 - Declaration of Conformity 2003-08-18.doc
© Woodward Governor Company Leonhard-Regierbau GmbH Stuttgart +49 (0) 711 789 54-0

Seite 52/53

© Woodward

Ihre Meinungen und Anregungen zu dieser Dokumentation sind uns wichtig. Bitte senden Sie Ihre Kommentare an: <a href="mailto:style="style-type: style-type: style-

Woodward GmbH

Handwerkstrasse 29 - 70565 Stuttgart - Germany Telefon +49 (711) 789 54-0 • Fax +49 (711) 789 54-100 sales-stuttgart@woodward.com

Homepage

http://www.woodward.com/power

Woodward hat weltweit eigene Fertigungsstätten, Niederlassungen und Vertretungen sowie autorisierte Distributoren und andere autorisierte Service- und Verkaufsstätten.

Für eine komplette Liste aller Anschriften/Telefon-/Fax-Nummern/eMail-Adressen aller Niederlassungen besuchen Sie bitte unsere Homepage (www.woodward.com).